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ABSTRACT Non-Pharmaceutical Interventions (NPIs) are essential measures that reduce and control a
severe outbreak or a pandemic, especially in the absence of drug treatments. However, estimating and
evaluating their impact on society remains challenging, considering the numerous and closely tied aspects
to examine. This article proposes a fine-grain modeling methodology for NPIs, based on high-order
relationships between people and environments, mimicking direct and indirect contagion pathways over
time. After assessing the ability of each intervention in controlling an epidemic propagation, we devise
a multi-objective optimization framework, which, based on the epidemiological data, calculates the NPI
combination that should be implemented to minimize the spread of an epidemic as well as the damage due
to the intervention. Each intervention is thus evaluated through an agent-based simulation, considering not
only the reduction in the fraction of infected but also to what extent its application damages the daily life
of the population. We run experiments on three data sets, and the results illustrate how the application of
NPIs should be tailored to the specific epidemic situation. They further highlight the critical importance of
correctly implementing personal protective (e.g., using face masks) and sanitization measures to slow down
a pathogen spreading, especially in crowded places.

INDEX TERMS Agent-based modeling, complex networks, epidemic, high-order relationships, hyper-
graphs, non-pharmaceutical interventions.

I. INTRODUCTION
Since ancient times, different populations have adopted vary-
ing strategies to prevent and contain diseases, from the iso-
lation of sick individuals to establishing a time limit to the
manifestation of symptoms to magical practices. [29]. The
concept of modern and preventive quarantine dates back only
to 1377; still today, it represents a general preventive inter-
vention in the absence of a targeted vaccine, along with high
healthcare surveillance and public information [29], [44],
[51]. Generally, all healthcare policies intended to mitigate
the effects of the spread of a new virus or pathogens when no
vaccines or medicine are available yet are commonly referred
to as Non-Pharmaceutical Interventions (NPIs) [51]. Current
development of the recent pandemic highlighted to what
extent the increase of human mobility and goods exchange
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made NPIs, such as lockdown and border closure, more chal-
lenging to apply to past cases in history, mainly because of
their negative impact on the worldwide economy [9], [24] as
well as on the psychological wellness of society [33], [56],
[68], [69]. Choosing the right control policy to adopt is a
burden that governments bear as their decisions have reper-
cussions also when the epidemic is under control. Thus, each
country is responsible for adopting NPIs according to its ter-
ritory’s specific needs. As examined in a document published
by the World Health Organization (WHO) in 2019 [51], each
NPI has different effects, resource implications, and ethical
considerations. To precisely study the consequences of each
intervention on the region it has to be applied, the models
used to simulate an epidemic propagation need to guarantee
a high level of accuracy to ensure both efficacy and efficiency
in evaluating the specific control policy.

Most of the well-known models adopted to evaluate the
outcomes of control policies are based on math equations
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(Equation-BasedModels, EBM) that have proved their ability
to mimic the epidemic spreading in individuals [23], [34],
[36]. However, these models assume that the population
behavior and individual contact types are homogeneous [10].
The aforementioned is a severe limitation for real-world sce-
narios. It reduces the modeling effectiveness in describing
different individuals and social behaviors, urbanmobility pat-
terns, geographic information systems (GIS), and so on [41].
Further, equation-based models do not provide an easy way
to model different contacts [28]. In particular, many epidemic
contagions operate in two ways: direct contagion (person-
to-person infection) and indirect contagion (infection via an
intermediary, such as furnishings or clothing). In other terms,
EBMs provide us quantitative information about the num-
ber of infected individuals in the worst-case scenario. Yet,
to reduce the negative impact of control interventions, pol-
icymakers need to introduce targeted actions and obligations,
such as closing a specific area or building (school, workplace,
metro), or wearing a face mask in crowded places.

In this sense, designing, implementing, and evaluating epi-
demic control interventions has become a challenging task.
Agent-Based Models (ABMs) support researchers in this
direction. ABMs are a modeling tool able to easily incorpo-
rate features related to population and society and are widely
adopted to simulate human behaviors under specific condi-
tions [48], [62], in particular in epidemiological studies [45].
They allow researchers to naturally include human mobility
data to model humans interactions between the environment
or other individuals. Typically, many epidemic ABMs also
exploit networks to define possible agent interactions. Such
data can be retrieved from online social networks (OSNs),
where users share their real-time location (Foursquare), geo-
tag media posts (Facebook and Instagram), or review busi-
nesses (Yelp). The growing popularity of these online plat-
forms and the ubiquitous online access provide gold data
for studying users’ habits, lifestyles, and mobility patterns to
include in ABMs.

The above considerations have been the seed of our previ-
ous work [6]: high-order interactions cannot be ignored when
dealing with models of diseases spreading through the air or
any other infected object or environment. Here hypergraphs
come into play, as a hyperedge can naturally model a group
of people being in the same location (or environment) in a
given time, even though they did not have any direct contact.
Specifically, we formally defined time-varying hypergraphs
(TVH), where a node’s weight within a hyperedge represents
the last time a user has visited that specific location. We fur-
ther developed the SIS compartmental model into an ABM,
exploiting our model to simulate interactions between agents
and locations, which interact according to the humanmobility
pattern computed from a real-world data set of the social
network Foursquare.We evaluated and compared the effect of
direct and indirect contacts on disease propagation, studying
the impact of accurately modeling the time interval within
which the two contagion pathways may happen and hasten
the epidemic diffusion.

This contribution is an extension of our previous work just
mentioned. In this study, we specifically focus on formally
introducing NPIs within our TVH framework, assessing the
effectiveness of each control policy in reducing direct and
indirect contagion pathways. Each intervention is evaluated
via an ABM simulation, considering the reduction in the
number of infected and to what extent its application dam-
ages the daily life of the population. We then embed these
two contrasting goals within a multi-objective optimization
framework to guide the choice of which NPI combination
should be implemented. Themajor contributions of this paper
can be summarized as follows:

• A discussion about NPIs and how they can be embedded
within an epidemiological model based on high-order
networks and ABMs, emphasizing the importance of
modeling individual and global population behaviors;

• The formal definition of NPIs, described by the WHO
in [51], for our epidemiological framework based on
TVHs, proposed in [6];

• Evaluation of each NPI applying the SIS compartmental
equation-model into an ABM that exploits our diffusion
algorithm to simulate interactions between agents and
locations;

• The design and implementation of a genetic algorithm-
based methodology to optimize the choice of which
NPI combination has to be adopted when contrasting
objectives are considered.

The remainder of this paper is organized as follows.
Section II reviews some relevant literature about epidemic
models on hypergraphs and NPIs. Temporal hypergraphs, our
ABM design-methodology, and the epidemic diffusion algo-
rithm are summarized in Section III. In Section IV, we discuss
NPIs and howwe embedded themwithin the epidemiological
framework based on THVs. Section V describes the exper-
imental setting and the data sets used in our analysis and
Section VI presents the sensitivity analysis of the model.
In Section VII, we examine and discuss how evaluating the
choice of an NPI implementation within a multi-objective
optimization framework. Finally, SectionVIII details the con-
clusion and future works.

II. RELATED WORK
A. EPIDEMIC MODELS ON HYPERGRAPHS
A complete overview ofmathematical frameworks capably of
explicitly and naturally describing group interactions is given
by Battiston et al. [11]. Specifically, the authors outline the
dynamics of structures with many-to-many interactions and
discuss higher-order diffusion models, including spreading
dynamics on hypergraphs.

Bodò et al. [12] first proposed modeling communities as
hyperedges, based on the concept that an actual model of
an epidemic outbreak has to take into account two factors:
community structure and infection pressure. They translated
this approach into practice using different contagion prob-
abilities according to the place. In addition, they bounded
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the likelihood that a susceptible individual becomes infected
in a unit to be not proportional to the number of infected
individuals within that unit. The authors show that using a
non-linear function to model the infection pressure is crucial
not to overestimate the epidemic propagation. In that way,
they demonstrated that graphs are not a well-suited structure
to capture the many-to-many relationships that come into
play during epidemic propagation processes. In this model,
Poisson processes govern both infection and recovery, where
the infection rate r takes into account connectivity patterns.
In contrast, recovery is a spontaneous process controlled by
a fixed recovery rate γ .

Suo et al. [63] investigated a similar SIS model on hyper-
graphs in the context of rumor spreading on social media.
They proposed two information diffusion models by consid-
ering how an individual might decide to share content on a
social media platform, either to all the contacts or targeting
a particular group. In the global strategy, at each time step,
an infected node i can infect with a probability β all the
susceptible neighboring nodes connected to i via a hyperedge.
With the local approach, an infected node i randomly chooses
one of its hyperedges e and then tries to infect all the nodes
in e with a probability of success β.
Another version of a high-order contagion model for

spreading dynamics occurring at group level was proposed
by Jhun et al. [40]. Specifically, they studied the spreading
process on scale-free d-uniform hypergraphs. In this model,
a susceptible node in a hyperedge e of size d may be infected
from e, with rate βd , only if the remaining d − 1 nodes
composing e are infectious. A standard recovery probability
µ is used for recovery.

Recently, de Arruda et al. [8] presented an SIS framework
that explicitly includes critical-mass dynamics into the conta-
gion model. The authors generalize the simplicial contagion
model proposed by Iacopini et al. [37] both structurally and
dynamically. They (i) moved from simplicial complexes to
hypergraphs and (ii) allowed a hyperedge e to be potentially
infectious for a node i ∈ e if the number of infected nodes
composing e is greater or equal to a given threshold te.

The epidemic propagationmodel, proposed in our previous
work [6] and enriched in this paper, extends the work of
Bodò et al. [12] by accounting for both direct and indirect
contacts in the spreading process. As for Bodò et al., infection
and recovery are Poisson processes. Further, we used the
same non-linear function to model the infection pressure.
In contrast, in our model, a location may become contami-
nated (and thus spreading the epidemic) according to Poisson
processes proportional to the number of infected nodes within
that hyperedge. This concept also differs from the models of
Jhun et al. [40], and de Arruda et al. [8], where a hyperedge
of degree d becomes infectious if d − 1 nodes within it are
infected [40] or if they are higher than a given threshold [8].

B. NON-PHARMACEUTICAL INTERVENTIONS
Non-pharmaceutical interventions (NPIs) have been the
subject of vast literature even before the COVID-19

pandemic [27], [67]. Still, until 2007, Aledort et al. [2] report
a generally poor quality of evidence on which to base
non-pharmaceutical pandemic planning decisions, mainly
due to the lack of representative data and a validation pro-
cess [67]. Unfortunately, when the COVID-19 started spread-
ing worldwide, NPIs were the only possible measures to stop
its diffusion. This event gave birth to an unseen joint effort
of the academic community and tech giants in understand,
model and assess the connection between human behaviors
and disease diffusion and the effects of applying NPIs [54].

In a recent survey [54], Nicola Perra thoroughly describes
current literature about NPIs during the COVID-19 pan-
demic. The author classifies the models adopted into four cat-
egories: i) compartmental models, ii) metapopulationmodels,
iii) statistical models, and iv) agent-based models. In this
section, we will focus on agent-based models as, in this
work, we exploit the ABMparadigm to simulate the epidemic
spreading and the application of NPIs. For a detailed discus-
sion about ABMs and a comparison with EBMs, we refer the
reader to the following works [7], [65], [66]. Another recent
survey about the use of ABMs to simulate the Covid-19 pan-
demic can be found in [47].

Hoertel et al. [35] develop a detailed ABM for France to
evaluate the effectiveness of different NPIs in the reopen-
ing phases after the first wave. The proposed model has
194 parameters, describing the socio-demographic features of
the French population (140), the contact networks (33), and
the features of the virus (21). The authors study lockdown
and post-lockdown measures, including physical distancing,
mask-wearing, and isolation approaches, highlighting how
the interventions after lifting the first lockdown were not
enough to overburden the healthcare system. With a similar
approach, Aleta et al. [3] build a multilayer synthetic pop-
ulation that models the socio-demographic features of the
Boston metropolitan area using high-resolution data describ-
ing the movements and potential interactions of people in the
city to investigate the impact of different reopening scenarios.
Their results suggest how a proactive policy of testing, con-
tact tracing, and household quarantine could gradually reopen
economic activities and workplaces with a low impact on the
healthcare system. Analogous to this work, the same authors
also propose an ABM for the metropolitan areas of New York
and Seattle [4], informing the model with mobile phone data
and Foursquare data to identify POIs.

Wilder et al. [70] propose an ABM to study the spreading
of COVID-19 in Hubei, Lombardy (Italy), and New York
City. The synthetic population is formed by individuals
stratified for age, comorbidities, and assigned to a house-
hold, while contacts among agents in different contexts
than home are modeled via contact matrices. Their results
suggest that measures should be tailored to the specific
socio-demographic features of each population as the efficacy
of NPIs varied across the analyzed location. Contact matri-
ces are also used by Ogden et al. [50] to model a synthetic
sample of the Canadian population to evaluate social dis-
tancing and isolation measures to control the disease spread.
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Their outcomes indicate that lifting disruptive NPIs such as
shut-downs must be accompanied by enhancements to other
NPIs to prevent new introductions and to identify and control
new transmission chains.

Yang et al. [73] use a network-based model to represent
contact happening inter- and intra- different cities in the
Hubei province. They specifically examined the use of per-
sonal protective, social distancing, and a combination of those
measures to decrease the infection rate.

Bouchnita et al. [13] design a multi-scale ABM in which
agents move according to a social force model and which
considers both direct and indirect transmission mechanisms.
The authors do not explicitly consider the notion of loca-
tion as agents move on a grid. The model simulates indi-
rect contagion based on the normalized concentration of
deposited SARS-CoV-2 on hard surfaces, the averaged rate of
SARS-CoV-2 secretion by contagious agents, and the decay
rate of the virus. For each agent, indirect transmission can
occur only once every day at a randommoment. As discussed
in Section II-A, the indirect diffusion mechanism described
by Bouchnita et al. is profoundly different from the process
described in our previous work [6] as hyperedges encode
places where agents can meet and may become contaminated
according to Poisson processes proportional to the number of
infected nodes within that hyperedge.

Silva et al. [59] propose an agent-based framework
(COVID-ABS) to simulate people, business, government,
and the health care system. The framework allows for the
implementation of several NPIs and measures the impact in
terms of disease and economic burden. Other few works also
use ABMs to simulate the economic consequences of the
COVID-19. For instance, Inoue and Todo [38] quantify the
economic effect of a possible lockdown of Tokyo, estimating
that the lockdown would result in an 86% reduction of
the daily production in Japan after one month. Similar to
COVID-ABS, Dignum et al. [18] present an ABM simula-
tion tool to analyze possible repercussions of policy inter-
ventions, combining social, economic, and health aspects.
Generally, all works agree that continued intervention should
be considered to keep the transmission of an epidemic under
control, as well as mixing NPIs to best regulate contagion
dynamics.

In this work, we exploit the previously proposed TVH
framework [6] to model direct and indirect transmission
dynamics of disease spreading. Alike (temporal) graphs,
TVHs abstract and formalize contact among agents simulated
with an ABM, but adding information about where the con-
tact is happening. Hence, such structures allow to formally
analyze diffusion mechanisms while accounting for group
interactions and indirect contagion processes via contami-
nated locations.

III. HIGH-ORDER TEMPORAL EPIDEMIC DYNAMICS
This section describes some useful concepts related to
the framework presented in [6], formally introducing
TVHs and the high-order diffusion process to simulate

human-to-human (direct) and human-to-environment (indi-
rect) infection propagation.

A. A HYPERGRAPH MODEL
Propagation of contagious diseases is a complex dynamic
process that holds abounding human behavior aspects.
Graphs are not expressive enough to easily simulate direct
and indirect contact among individuals; furthermore, such
structures do not consider when a connection happens, which
is crucial in epidemic dynamics [53]. A contact network can
be easily extended to include the time dimension by using
Time-Varying Graphs (TVGs) [16], [22], a variant of the
graph model, where a link between two nodes is valid only
for a given time interval. Nonetheless, even using TVGs,
the information tying together a group of individuals simul-
taneously in a particular geo-location is lost.

To correctly model an epidemic propagation in a many-
to-many fashion and capture that people, moving through
different locations, form a community in a given time and
space, we adopt hypergraphs. A hypergraph is an ordered
pair H = (V ,E), where V is the set of nodes, and E is the
set of hyperedges. Each hyperedge is a non-empty subset of
nodes. Hypergraphs generalize the well-known graph model
as graphs represent only binary relationships, while hyper-
graphs relationships of any arity. We will refer to n = |V |
and m = |E| as the size of the vertex set and the edge set,
respectively.

1) TIME-VARYING HYPERGRAPHS
To better mimic an epidemic spreading, we extend the defini-
tion of TVGs, presented by Casteigts et al. in [16], to hyper-
graphs. Employing a TVH to describe a contact network
enables us to minimize the effect of time and the presence of
only direct contacts. Formally, a TVH is defined as follows.

Definition 1: A TVH is a hypergraph H = (V ,E , T , ρ),
where T is the lifetime of the system and ρ: E × T → {0, 1}
is an existing function, indicating whether a hyperedge exists
in a given timeframe.

For each t ∈ T ,we refer to the hypergraphHt = (V ,Et ) as
the hypergraph corresponding to a particular time t , i.e., Et =
{e ∈ E : ρ(e, t) = 1}, where Et denotes the set of existing
hyperedges at time t .

As described by Bretto in [14], the two-section (or clique)
representation of H, denoted with [H]2, is a graph whose
vertices are the vertices of H, and where two vertices form
an edge if they are in the same hyperedge. Figure 1 presents
an instance of a TVH (see Figure 1a) compared to its cor-
responding two-section graph (see Figure 1b). It illustrates
a trivial TVH made up by 8 individuals (nodes), V =

{a, b, c, d, e, f , g, h}, and 5 geographical locations (hyper-
edges), E = {P1,P2,P3,P4,P5}. Each hyperedge is labeled
with its corresponding availability time interval t = [ts, te),
T = {[1, 2), [1, 3), [3, 4), [4, 5), [5, 7), [3, 7)}. It is worth
noting that the [H]2 representation introduces a loss of infor-
mation in the contact network. For instance, it is not possible
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FIGURE 1. A simple TVH H (left) and its clique representation G = [H]2 (right). Each hyperedge/edge is labeled with the corresponding availability time
span.

to recognize which is the time interval when the individuals
c and e were both in the venue P3 or P4.

In our epidemiological modeling framework, we used the
following definition of TVH and check-in function ω.
Definition 2: A TVH for an epidemic diffusion is a

hypergraphH = (V ,E, T , ω), where

• V is the set of n vertices (users/agents);
• E is the set of m hyperedges (locations);
• T is the lifetime of the system;
• ω: V × E × [ts, te]→ {0, ctv,`}, where ctv,` ∈ T is the
last check-in time of an agent v ∈ V in a location ` ∈ E
during the time interval [ts, te] (0 means that v has never
checked-in ` during [ts, te]).

The function ω only keeps track of the last check-in time
ctv,` for a vertex v in a given location ` during a time interval.
If v did not checked-in in the same location ` or in another
location `′ in the next time interval t ′, the value of ctv,` is still
considered a valid check-in time in the current timestamp t .
We store the last check-in time ctv,` of a vertex v in a location
` as the weight of v in the hyperedge representing `. This
modeling strategy allows us to simulate direct and indirect
contagion processes easily: for each time interval, we can
effortlessly know where the user is. We include this approach
in an ABM simulation to enrich the TVH model with crucial
social dynamics. The simulation time is split into fixed-width
intervals of length1, corresponding to the time interval when
indirect contagion may happen. Given a sampling time 8
of a check-in data set, the total number of time intervals
considered is |T | =

⌈
8
1

⌉
.

B. THE DESIGN METHODOLOGY
We based the idea of our ABM design methodology on
the assumption that two spreading policies regularize an
epidemic process: direct and indirect contagions between
individuals and environments. Direct contact implies a pair-
wise interaction between two individuals in the same place.
In contrast, an indirect contagion embodies the interchanges
that may happen between agents and locations. These two
types of contacts are a natural consequence of each person’s
daily activities and commuting routes. For instance, when an
agent moves from its home to its workplace, it may be either
infected by touching some furniture or simply breathing

contaminated air (indirect interaction) or by a face-to-face
talk with another agent (direct exchange).

In [6], we proposed a diffusion algorithm whose spreading
process is designed in a discrete-event fashion and exploits
the TVH structure to discover whether direct or indirect
interactions may happen. During each time interval, agents
are simulated according to their scheduling policy. Then,
our diffusion algorithm is performed. As agents are free to
move, the epidemic has the chance of spreading from one
location to another. Simultaneously, the outbreak may still
spread across agents located in the same place at a particular
interval of time. While direct contaminations require agents’
co-presence, indirect connections happen between agents and
the environment, and co-presence is not needed. In the fol-
lowing, we provide definitions of the concepts adopted in the
next sections.

• 8 is the time span of the data.
• T is the set of time intervals describing the evolution of
the relationships between agents and geo-locations.

• 1 is a real value (minutes, hours or days) corresponding
to the time discretization parameter. It further refers to
the time span when indirect contagions may happen.

• δ is a real - small - value (milliseconds, seconds or
minutes) defining when direct infections may take place.
A direct contagion is established if two agents stay in the
same location within a time difference less than δ.

• t is the current simulation interval (t ∈ T ).
• H = (V ,E, T , ω) is the TVH representing the data (see
Definition 2).

• 0t and Nt define the neighborhood functions of an agent
a ∈ V in a given simulation time t . Specifically, 0t (a) =
{` ∈ E : ω(a, `, t) 6= 0} is the set of locations visited
by a during the interval t; Nt (a) =

⋃
`∈0t (a) Vt (`) is the

set of neighbors of a during the simulation time t , where
Vt (`) denotes the set of agents that visited the location `
during the interval t .

• ϒ(a, `) is a time function providing the last check-in
time of the agent a in the location `.

• Tt (a) and Tt (`) denote the infection state (1 infected,
0 not infected) of an agent or a location in a given
simulation time t , respectively.

• Xt (a, b) is a direct contact function. Given two agents a
and b, it returns 1 if they have direct contact in the time
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interval t; 0 otherwise. Formally,

Xt (a, b)

=

{
1, if ∃ ` ∈ 0t (a) ∩ 0t (b) ∧ |ϒ(a, `)−ϒ(b, `)|<δ
0, otherwise.

In the following, we will remove the subscript t when the
simulation time is clear from the context.

The scheduling routine of each agent is defined by an
input check-ins data set, describing where each agent is and
when the agent entered that specific location. As described
in Section III-A, the overall check-in data set is split into
fixed-width intervals of length 1, corresponding to the
time-span when an indirect contagion may happen. In prac-
tice, all check-ins happening within the same location in a
1 time window are grouped together, and a hyperedge is
added to the TVH to represent the location where a group
interaction (or indirect contact) is happening. For each time
window, if the time difference between two check-ins in the
same location is lower than a given small value δ, we consider
direct contact happening between those two agents. This
methodology approximates the notion of direct contact when
high-granular data on the individual routine is not available.

C. THE DIFFUSION PROCESS
In a typical SIS model, the infection and recovery states are
ruled by a Poisson process. Thus, either a susceptible individ-
ual or location becomes (directly or indirectly) infected with
a probability 1− e−βx f (n). Here, βx denotes the infection rate
per-contact (considering either direct or indirect contacts), n
is the number of infected entities (individuals or locations),
and f e(·) is a non-linear function used to bound the infection
pressure for large value of n, as described in Section II. Sim-
ilarly, an infected agent or location recovers with probability
1 − e−γx , where γx denotes the recovery rate for agents and
locations. In our previous work [6], we devised an SIS variant
on hypergraphs by means of a diffusion algorithm, whose
pseudo-code is described in Algorithm 1, Section 5.4, of [6].
In the following, we detail its main components.

During each time step, our diffusion algorithm proceeds in
three contagious phases.
1. Agent-to-Environment. The first phase simulates the

environment infectiveness. For all non contaminated
locations, (i.e., ` ∈ E : T (`) = 0), we compute the
number of infected agents that have visited that location:

I e(`) =
∑
a∈V (`)

T(a).

This value is then used to update the infection state of
a susceptible location `, as expressed by the following
rule:

T(`) =

{
1, infected with probability 1− e−f

e(I e(`))

0, not infected otherwise,

where f e(·) is a non-linear function, typically adopted
to govern the behavior of the epidemic outbreak

over hyperedges [12]. In our experiments (see
Sections VI and VII), we considered the following
regularization function:

f e(x; c) =

{
x, if 0 ≤ x ≤ c
c, if x > c,

where c is a constant given as parameter.
2. Agent-to-Agent. The second phase simulates the direct

propagation process. For all susceptible agents (i.e.,
a ∈ V : T (a) = 0), we compute the total number of
infected neighbors. Formally,

Id (a) =
∑
b∈N(a)

T(b)X(a, b).

This value is then used to update the infection state of a
susceptible agent a, as expressed by the following rule:

T(a) =

{
1, infected with probability 1− e−I

d (a)

0, not infected otherwise.

3. Environment-to-Agent. The third and last phase simu-
lates the indirect propagation process. For all susceptible
agents, (i.e., a ∈ V : T (a) = 0), we compute the number
of infected locations visited. Formally,

I i(a) =
∑
`∈0(a)

T(`).

This value is then used to update the infection state of a
susceptible agent a, as expressed by the following rule:

T(a) =

{
1, infected with probability 1− e−I

i(a)

0, not infected otherwise.

We consider the simulation proceeding in |T | discrete
steps. At each simulation step t , every agent independently
runs its step function and updates its internal state, which will
be effective in the next simulation phase t + 1.
To simulate the introduction of the NPIs described in

Section IV, we extended the diffusion algorithm to accom-
modate the specific details of each intervention and modeling
supplementary agent behaviors. The description of each NPI,
how it is formally embedded within a high-order diffusion
process based on hypergraphs, and how it is implemented
within the simulation are discussed in the following section.
All the parameters in input to our model are specified in
Section V-C.

IV. MODELING NPIs
NPIs are healthcare policies readily available at all times
and in all countries, intended to mitigate the effects of the
spread of a new virus or pathogens when no vaccines or
medicine are available yet [55]. The potential impacts of NPIs
on an influenza epidemic are to delay the introduction of the
infection into a population, delay the height and peak of the
outbreak if it has started, reduce transmission by personal pro-
tective or environmental measures, and reduce the number of
infections and hence the number of severe cases [51]. In 2019,
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the WHO Global Influenza Programme and the WHO Col-
laborating Centre for Infectious Disease Epidemiology and
Control (School of Public Health, University of Hong Kong),
published a report providing recommendations for the use of
NPIs based on a systematic review of the evidence on their
effectiveness, including personal protective measures, envi-
ronmental measures, social distancing measures, and travel-
related measures [51].

In the remainder of this section, we will review personal
protective, environmental, and social distancing measures
and how they can be embedded into an epidemiological
model based on high-order networks, ABMs, and the SIS
equation-based model. Moreover, we will describe how
we formally enriched our modeling framework to support
the evaluation of NPIs. In this work, we do not consider
travel-related measures as they require specific mobility data.
Those will be the focus of future investigations.

A. PERSONAL PROTECTIVE MEASURES
Examples of personal protective measures (PPMs) are hand
hygiene, respiratory etiquette, and face masks. While the
first two actions are a well-established and straightforward
practice concerning personal daily hygiene, face masks are
only conditionally recommended during a severe epidemic
or a pandemic or for symptomatic individuals. PPMs can be
implemented and simulated by decreasing the transmission
probability of a pathogen from one individual to another
when they come in contact and changing the infectiousness
probability caused by interacting with environments. PPMs
are an instance of individual behavior interventions as their
efficiency is defined by how many people respect them.

We embedded the adoption of PPMs into our model by
reducing the epidemic spreading opportunity (transmission
probabilities) for both direct and indirect contagion pathways.
Specifically, we decreased the values of the parameters βd
(agent-to-agent), βi (environment-to-agent), and βe (agent-
to-environment) to simulate the introduction of PPMs into the
agent population; hence, leaving unchanged the three phases
of the diffusion algorithm. It is worth noting that we lower the
value of those parameters only for the agents adopting PPMs.

B. ENVIRONMENTAL MEASURES
Surface and object cleaning actions are environmental mea-
sures (EMs) recommended as a public health intervention in
all settings to reduce influenza transmission. As for PPMs,
environmental measures can be implemented by decreasing
a pathogen’s transmission probability from a contaminated
object to an individual. For instance, if a person sneezes on
a table and, soon after, another person touches that surface,
a contagion may indirectly occur from one person to another.
To simulate EMs, we need to embed within the network of
contacts the notion of environment or location where people
can interact either with it or with other individuals. In other
words, the network model used to study epidemic propaga-
tion has to be location-aware. Here, hypergraphs come into
play as a hyperedge can naturally model a group of people

being in the same location in a given time, even though they
did not have any direct contact (see Section III).

Similar to PPMs, the adoption of EMs can be simulated
by modifying the contagiousness probabilities βi and βe.
Specifically, we reduced the parameter regulating the con-
tagiousness of an indirect contact βi by a factor β` for all
locations ` ∈ L sanitized at given time intervals. Formally,
βi ← βi − XL(`)β`, where XL(l) is an indicator function
equal to 1 for all the locations that are continuously sanitized.
If β` = βi, the transmission probability becomes βi =
βi−β` = 0. Thus, it causes the place to be nomore infectious.
As detailed in Section VI-B, we simulate the cleaning of all
locations restoring their status to susceptible and not reducing
the parameter βi to reproduce the fact that a location may
become infected again if it is not sanitized after each use.
The implementation of EMs required the addition of a fourth
phase after the three described in Section III-C.

C. SOCIAL DISTANCING MEASURES
Social distancing measures (SDMs) represent interventions
on individuals’ sociality and involve the population or
sub-population behaviors. Examples of these measures are
i) isolation of sick individuals, ii) quarantine of exposed
individuals, ii) contact tracing, iv) avoiding crowding, and v)
school, workplace, and, in general, public or private structure
closures. In the following, we describe how we embedded
these measures within our modeling approach.

1) ISOLATION
The word isolation indicates the separation or restriction of
movement of ill individuals with an infectious disease to
prevent transmission to others [19]. We embedded this policy
within the behavior of each agent, able to recognize whether
it is sick. At each time interval and before the execution of
the three phases of the diffusion algorithm, every agent a
may go in self-isolation according to a probability βisolation,
regulated by the following Poisson process 1−e−T (a)·βisolation ,
where T (a) is the infection state of the agent a. When an agent
is isolated, it does not contribute to the epidemic spreading;
in other words, other agents or environments cannot interact
with an isolated agent. Once isolated, the agent does not exit
this status until it recovers with a probability γa.

2) QUARANTINE
The word quarantine indicates an imposed separation or
restriction of movement of individuals exposed, who may or
may not be infected but are not ill, and who may become
infectious to others [19]. As for the isolation measure,
we embedded this policy within the behavior of the agents.
At each time interval t and, specifically, during the Agent-to-
Agent contagion phase, an agent a enters the quarantine state
according to an overall probability βquarantine proportional
to the number of infected agents Idt (a) it has met during
the previous time step. This scenario is regulated by the
Poisson process 1− e−I

d
t (a)βquarantine , where the number of ill
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agents Idt (a) is computed based on the simulation status of
the previous time step (t − 1). A quarantined agent no longer
contributes to the epidemic until it exits the confinement state
or recovers with a probability γa.

3) CONTACT TRACING
The idea behind contact tracing applications is to rapidly
identify at-risk individuals once a case has been detected [21].
However, even though such systems can substantially
increase the proportion of people quarantined, it can lead to
ethical issues such as leakage of information [51]. Further-
more, successful implementation relies on the availability of
resources and technology [25], [43]. Generally, a design tool
has to trace all contacts that agents have during the simulation
and identify infected agents. To simplify the evaluation of a
contact tracing intervention, we introduced several abstrac-
tions in our model. Specifically, we did not consider any
error in the retracement process, assuming a 100% accuracy
of location data, and we did not implement any particular
contact tracing protocol [1]. Further, we allowed all agents
access to global knowledge on the status of the epidemic. For
each agent a using the tracing application, we introduced a list
N (a) comprising all the agents (using the tracing application
themselves) that interacted with a during the simulation.
Contact tracing is modeled similarly to the quarantine

measure, but in this case, the tracing system is more powerful
and enables tracking the number of infected individuals the
agent has met during all previous steps instead of only the
previous one. In other words, we can consider this measure
like an informed quarantine as the main difference between
these two interventions lies in the information used by an
agent to decide whether to enter the quarantine state. In this
case, the agent remembers the contacts had in all previous
steps since the tracing measure was adopted. The usefulness
of distinguishing these two scenarios is also evident in a
more complex compartmental model with an Exposed state.
In this case, adopting a tracing technology allows the agent
to keep track of all its contacts and know whether they
have manifested symptoms or tested positive on the pathogen
even though they have come across many simulation steps
before. When only quarantine measures are implemented,
the agent only uses the contact information available in the
previous simulation step. As a consequence, the agent may
self-quarantine with a lower probability.

Formally, at each simulation step and before the execution
of the three phases of the diffusion algorithm, every agent a,
either infected or not, may decide to self-quarantine accord-
ing to the Poisson process 1 − e−I

d (a)βtracing , where Id (a) is
the number of infected individuals the agent has met during
all previous steps. If an agent set its state to quarantine, then
the simulation proceeds as for the implementation of the
quarantine measure.

4) AVOIDING CROWDING
Avoiding crowding is another example of SDM, often used
in combination with other policies to reduce influenza

transmission. Avoiding crowding may have cultural or reli-
gious implications; for instance, gatherings are places to share
information during influenza, comforting people, and reduc-
ing fear. During the SARS-CoV-2 pandemic, many countries
adopted several avoiding crowding policies - some stricter
than others - to contain its spread. For instance, the English
government permitted only up to 6 people to meet [49], while
the Italian government banned all sorts of gatherings [57].

In our framework, we implemented the avoiding crowding
measure as a global policy by deterministically reducing the
number of agents allowed within each place. We defined a
threshold α` representing the maximum number of people
allowed in a location ` per time interval. In other words,
for each location `, we only simulate the first α` agents
(sorted by their check-in time) at each time step. As the
scheduling policy of each agent is determined by the input
data, the newly reduced data set can be easily pre-computed
without requiring modifications to the diffusion algorithm.

5) LOCATION CLOSURE
Closing public or private places is a standard measure to
control an epidemic spreading by reducing possible contact
between individuals and environments in a severe outbreak.
This extreme measure may have substantial economic conse-
quences and result in significant societal problems.

Typically, this intervention is implemented by selectively
closing places according to a specific classification, such as
schools, transportation, workplace, restaurants. We imple-
mented this policy by stopping the simulation of all con-
tacts, both direct and indirect, happening within a location
` belonging to the set of closed places L, starting from a
time interval t . Hence, implementing such a measure required
modifying all three phases of the diffusion algorithm to pre-
vent the simulation of all contacts within the closed locations.
This measure can be formally illustrated by reducing to 0
all parameters regulating either an agent or an environment’s
infectiousness β(·)← β(·) −XL(`)β(·) ∀β(·) ∈ {βi, βd , βe},
where XL(`) is an indicator function equal to 1 for all closed
locations (i.e., ` ∈ L). The set L can be pre-computed
according to the policy to be investigated (e.g., closing trans-
portation or workplaces).

V. EXPERIMENT SETTING
This section describes the experimental setup of the simula-
tion, introducing the underlying epidemiological assumptions
and detailing the simulation parameters. It further defines
how each NPI is evaluated and finally describes the data sets
used. The experiment is designed to evaluate the impact of
NPIs not only in terms of reducing the fraction of infected
but also considering the cost of applying each measure. The
implementation of the model and the experiments are avail-
able on an open-source GitHub repository.1

1https://github.com/alessant/HGEpidemics
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TABLE 1. Simulation parameters. For each parameter, the table reports: which aspect of the simulation the parameter regulates, a short description, its
domain, and its value in the simulation (variable indicates that the parameter changes according to the specific experiment).

A. ASSUMPTIONS
As mentioned in Section III, the proposed epidemic design
methodology is based on high-order relationships that may
happen during an epidemic outbreak between humans and
environments, via direct and indirect contagious pathways.
From the epidemiological point-of-view, it is crucial to
clarify the assumptions lying underneath our model. First,
the diffusion procedure assumes that all infected individu-
als are asymptomatic. This choice advantages the epidemic
spreading as all infected continue to propagate the infection,
representing an epidemic outbreak’s optimal case. Second,
we do not consider the notion of incubation within our
model, intended as the time elapsed between exposure to a
pathogenic organism, and when symptoms and signs are first
apparent. In our model, each agent contracts the infection
according to a transmission probability and proportionally to
the number of infected individuals it met, or to the number of
locations it visited. As for the previous point, this choice helps
the epidemic spread out as the person becomes sick immedi-
ately. Third, we do not study how the time-length individuals
spend together plays a role in the infection dynamics as we
thoroughly analyzed the sensitivity of the TVH model to the
simulation’s parameters in [6]. Lastly, we fixed the value of
each epidemic parameter during the whole simulation steps
and we assume that each NPI is perfectly applied.

B. NPIs EVALUATION
To implement each NPI, we modified the diffusion algo-
rithm described in Section III-C according to the policy to

simulate. The parameters and framework enrichment for each
technique are detailed in Section IV. The impact of an NPI
or a combination of NPIs is compared against an unmiti-
gated scenario in which no interventions are implemented.
We evaluated the effectiveness of each NPI (or a combination
of them) according to two parameters: the reduction of the
final fraction of infected agents and how much the interven-
tion affects the population. To quantify each action’s impact
and compare the results across all data sets, we operatively
defined two domain-agnostic notions of damage. Specifi-
cally, for each agent, we determined the fraction of agents
it was unable to meet because of the adopted interventions.
We then defined the overall social damage of the intervention
Da as the average over the whole population. Similarly, for
each agent, we computed the fraction of the locations it was
not able visiting, due to the adopted interventions, and then
evaluated the overall commuting damage Dl as the average
over the population.

C. SIMULATION PARAMETERS
In the unmitigated (baseline) scenario or when no speci-
fied otherwise, we set the epidemic parameters as follows:
βd = 0.57, βi = 0.29, βe = 0.29, γe = 0.017, γa =
0.024, and c = 5. To have reasonable parameter values,
we based their choice on the mathematical model SIDHARTE
proposed by Giordano et al. [30] for the SARS-CoV-2 pan-
demic. We fixed the values of 1 = 4 (4 hours) for an
indirect contact to happen, to mimic the resistance of the
COVID-19 on surfaces [52], and δ = 15 (15 minutes), based
on the Immuni mobile tracing app that considers a direct
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contact happening in a timewindow of 15minutes [32]. Thus,
in ourmodel, an indirect contact may occur if two people have
been in the same place within 4 hours of difference, while a
direct contactmay happen if two people have been in the same
place within 15 minutes. It is worth underlining that our goal
is not to simulate the diffusion of the SARS-CoV-2 virus, but
more generally, the diffusion of any epidemic that can spread
even indirectly. In this setting, the average time an agent is
infected is 42·1 intervals (7 days), while for a location is 6·1
intervals (1 day). Table 1 lists all the simulation parameters
used to control the epidemic spreading and the introduction
of NPIs.

We generated the population mobility pattern according
to the three data sets that will be presented in Section V-D.
The simulations last 185 steps while the interventions (if any)
are introduced at the 100th step. As the fraction of infected
results from probabilistic processes, we ran each simulation
scenario 80 times, and we consider the averaged value as
a result. The simulation is initialized with a single infected
agent, the patient zero.

It should be emphasized that, in an SIS model, recovered
individuals become susceptible again without gaining any
immunity against the pathogen. In other words, there is no
memory of past infections. This is the typical spreading
model of infections like the common cold and influenza,
which do not confer any long-lasting immunity. In contrast,
in the SIR model, all agents will eventually recover and not
contract the infection anymore. In other terms, in the SIR
model, the outbreak will ultimately drop out. Based on this
consideration, and as we are interested in evaluating control
actions in the worst scenario, we analyze each intervention
under the SIS model.

D. DATA SETS
In the ABMmodel we developed, each agent moves between
geo-locations over time and comes in contact, via direct or
indirect pathways, with other agents and different environ-
ments (geo-locations). To model individuals (agents) mobil-
ity patterns, we adopted three data sets describing human
interactions at different scale: from i) a location-aware sens-
ing infrastructure (BLEBeacon data set [58]), ii) a metropoli-
tan area scenario (Foursquare data set [72]), and iii) a virtual
society scenario (Game of Thrones data set [39]).

Figure 2 shows the median number of direct and indirect
contacts across all data sets, considering 1 = 4 hours and
δ = 15minutes. For each value, we also reported the 25% and
75%quantiles. Inmore detail, as direct contacts, we evaluated
for each agent the number of different other agents it met;
while, as indirect contacts, the number of different locations
the agent has been. These plots depict an agent-centered
vision of the data, in the sense that we can grasp, on average,
how many different ways an agent may be infected by count-
ing the number of direct contacts and location visited (indirect
contacts). Figure 2 reveals the diverse nature of the data sets,
which results in distinct contact patterns. The BLEBeacon
data set refers to high-granular small-scale check-ins happen-
ing within a building. Based on that, it is reasonable to think
that an individual tend tomeet always the same people, but - at
the same time - they are free to walk in the structure. Figure 2a
details this pattern where the number of indirect contacts is
generally higher than the number of direct contacts. We can
observe a completely different picture in Figure 2c, related
to the Game of Thrones (GoT) data set, where the number
of direct contacts is significantly higher than the number
of indirect contacts. Once again, this pattern is due to the
constitution of the data as the majority of the GoT characters
tend not to move across many different locations, but they
still have many direct contacts (e.g., council or battle scenes).
Figure 2b refers to the real-world large-scale check-in data set
from the social platform Foursquare. In this case, no class of
contacts strongly prevails on the other. In contrast with the
other two data sets, we can notice a consistent variance in the
number of locations visited by the users. As already discussed
in our previous work [6] and other several studies [5], [31],
[71], this behavior is typical of online social network, where
the minority of the users accounts for the most content.
A detailed description of each data set follows.

1) THE BLEBeacon DATA SET
The BLEBeacon data set [58] is a collection of Bluetooth
Low Energy (BLE) advertisement packets/traces generated
from BLE beacons carried by people following their daily
routine inside a university building for a whole month. The
main objective of this data set was to present a real-life
realization of a location-aware sensing infrastructure that

FIGURE 2. Distribution of direct and indirect contacts, fixing 1 = 4 hours and δ = 15 minutes.
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FIGURE 3. Aggregated weekly (on the left) and daily (on the right) check-ins distribution of the overall BLEBeacon data set referring to 30 days
of people daily routine inside a university building.

FIGURE 4. Daily check-in distribution for the Foursquare data set.

can provide insights for smart sensing platforms, building
management, and user-localization frameworks. The data set
contains 153, 868 check-ins of 62 users and 31 locations.
Figure 3 provides the check-ins distribution aggregated over
a week (see Figure 3a) and over a day (see Figure 3b).

2) THE FOURSQUARE DATA SET
The Foursquare social network data set, introduced by
Yang et al. in [72], is a collection of check-ins originated
from the city of Tokyo and crawled from 12 April 2012 to
16 February 2013. The data set contains 573, 703 check-ins
of 2, 293 users and 61, 858 locations (such as restaurants, cin-
ema, sports and so on). In our previous work [6], we analyzed
the sensitivity of the proposed TVHmodel to the simulation’s
parameters over the most crowded month (May 2012) of this
data. Having fixed 1 = 4 and δ = 15, our analysis revealed
a peak in the number of infections near the 20% of the overall
population. Towards this, it is worth stressing that the applica-
tion of a single or a combination of non-pharmaceutical mea-
sures only makes sense in a dangerous scenario, in which the
epidemic spreading is hard to control. Thus, to increase the
probability of having a more virulent pathogen spreading and
overcome the sparsity nature of the data set, we merged the
check-ins happening from April 1st , 2012 up to August 1st ,
2012 into a single month, obtaining 2, 147 users and 41, 519
locations. Figure 4 shows the number of daily check-ins over
the four months considered (April-July) and the final amount
used for the simulation.

3) THE GAME OF THRONES DATA SET
Starting from scripting data [39] of the whole 8 seasons
of the Game of Thrones (GoT) HBO TV series, we devel-
oped a check-in data set based on the mobility patterns

of the characters’ series. As episodes are chronologically
ordered, but no real date is available, we set a virtual clock to
January 1st, updating it according to each scene’s duration.
As each episode has an average duration of around 1 hour,
we obtained a data set spanning over 70 hours. As for the
Foursquare data set, to better estimate the effect of NPIs in
a virulent scenario on a longer temporal interval, we finally
concatenated the obtained check-ins until having data cover-
ing a total of one month, with 577 characters and 111 loca-
tions. Figure 5 depicts an analysis of the characters’ mobility
patterns over the first 70 hours. Specifically, we examined a
possible correlation between the number of unique (without
repetition) people met and unique locations visited by each
GoT character (see Figure 5a). As shown, the characters that
had contacts with a higher number of people tended to have
traveled across many places. This behavior becomes even
more evident in Figure 5b, where we considered all characters
met and locations visited.

VI. SENSITIVITY ANALYSIS
This section describes the experiments we carried out to
validate the proposed model and verify the correctness of
its implementation. In our previous work [6], we extensively
analyzed the sensitivity of the TVH model to the epidemic
parameters and different discretization of the time intervals
when either direct or indirect contacts may happen. In this
study, we focus on evaluating the model’s sensitivity regard-
ing the parameters regulating each NPI; thus, studying how
perturbations in the input modify the model output.

To analyze the impact in reducing the fraction of infected
and the damage brought by each NPI, we defined several
scenarios in which we applied just a single intervention.
In this way, we not only evaluate the sensitivity of the model
to the specific NPI, but we also verify the implementation
of each intervention and ensure that each logical component
of the model behaves as intended. In the following sections,
we describe each validation scenario, comparing the fraction
of infected agents at i) the peak, ii) the lowest value reached
by the infection and iii) the end of each simulation against
the unmitigated scenario. We further report the impact of the
intervention in terms of damage as defined in Section V-B.
For each scenario, we also discuss some implications of using
the given measure and its efficacy.

Figure 6 shows the epidemic diffusion patterns in an unmit-
igated scenario, considering contagions due to i) direct and
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FIGURE 5. GoT characters (nodes) and environments (hyperedges) distribution, considering an agent’s contact
history without (5a) and with (5b) repetitions.

indirect contacts, ii) direct contacts, and iii) indirect con-
tacts. In this case, the three plots report an epidemic-centered
vision, in which we observe the fraction of infected due to
either direct, indirect (infected locations), or both contact
types. As expected, these patterns are a consequence of the
contacts happening in the data. In fact, if we compare Figure 2
with Figure 6, we can note that indirect contacts cause higher
peaks in the fraction of infected for the BLE data set since
agents visits at least 10 locations on average while having a
lowermean of direct contacts (see Figure 6a). On the contrary,
direct contacts trigger more contagions than indirect contacts
for the GoT data set, as suggested by the respective number
of the two types of interactions (see Figure 6c). On the other
hand, the contagion patterns in the Foursquare data set never
reach the peak of 80%of infected (see Figure 6b). Once again,
this outcome was expected given the high sparsity of the
data. Here, indirect prevail direct contagions as we have more
information about the places each user visit rather than the
other people they meet. Further, it is worth noting that even
though each agent visits only a few locations on average (see
Figure 2b), their check-ins tend to refer to common place like
transportation or general entertainment (for instance, the 41
most crowded locations in the data set refer to the trans-
portation system). Hence, indirect contacts drive the epidemic
diffusion as one location can potentially infect many agents.
Consequently, these locations have the potential to spread the
epidemic across a considerable number of agents.

Figure 7 presents the averaged curves of the fraction of
infected and susceptible agents obtained from the simula-
tion replications. They behave similarly to the standard SIS
model, dominated by the decline of the Susceptible popula-
tion and the increase of the Infected population. Dark lines in
the figure represent the median of 80 simulation replications,
and the shaded areas represent 25 and 75 quantiles. These
curves appear more rugged than those resulting from an EBM
due to the heterogeneous mixing facilitated by the contact
network.

A. SCENARIO 1: USING PPMs
1) EXPERIMENTAL SETTING
As described in Section IV-A, we modeled the introduction
of PPMs by reducing the infection probability of each agent

adopting these measures. Specifically, we reduced the direct
and indirect contagious transmission probability by about
80%.We set the new direct and indirect contagion probability
as follows: ppm_βd = 0.1, ppm_βe = 0.05 and ppm_βi =
0.05 (see Table 1). To analyze the impact of applying PPMs,
we varied the fraction αp of agents using themeasures, testing
five values 0.0, .25, .50, .75, and 1.0. Clearly the scenario
with αp = 0.0 corresponds to the unmitigated scenario.

2) DISCUSSION
Table 2 reports the results for this scenario. First, we need to
note that the application of such intervention does not cause
any social damage (Da) nor commuting damage (Dl). In fact,
adopting PPMs like face masks and hand hygiene does not
prevent an agent from meeting other agents or freely move
across locations. Second, increasing the fraction of agents
adopting PPMs causes a decrease in the fraction of infected,
suggesting how the infection propagation is susceptible to
PPMs usage by a growing number of individuals. However,
at least 75% of the population have to use PPMs to visi-
bly decrease the fraction of infected both at the end of the
simulation and in the lowest peak of the infection in all
data sets. As expected from real-world events and the vast
amount of current literature [54], only applying PPMs cannot
notably reduce the spreading of a pathogen, but - even in small
percentages - can help lower the number of infections.

B. SCENARIO 2: USING EMs
1) EXPERIMENTAL SETTING
As introduced in Section IV-B, our modeling framework
allows by design adopting EMs by manipulating the infection
probability due to indirect contacts. In this validation sce-
nario, we simulate the cleaning of all locations restoring their
status to healthy at the end of themost crowded time intervals,
i.e., 12:00-16:00, 16:00-20:00 and 20:00-24:00. We did not
reduce the parameter βi to reproduce the fact that a location
may become infected again if it is not sanitized after each use.

2) DISCUSSION
Table 3 presents the results of this experiment. In this
case, we analyze the epidemic spreading under two different
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FIGURE 6. Pathogen diffusion in an unmitigated scenario, considering contagions due to i) both direct and indirect contacts, ii) direct contacts, and
iii) indirect contacts.

FIGURE 7. Epidemic propagation behavior under the SIS model.

perspectives. We report the fraction of infected i) considering
both direct and indirect contagious pathways and ii) focusing
only on the contribution made by indirect contacts. Even
though we can observe poor results in the application of
cleaning procedures in the first case, we can note that the
introduction of EMs has some effect in reducing the fraction
of infected due to indirect contacts. This result is not surpris-
ing as agents are still free to move and propagate the epidemic
making the locations infected again. As in the case of the
adoption of PPMs, we have neither social nor commuting
damage as there are no constraints on the mobility of the
agents. Given the limited cost of EMs, these interventions
can be considered good practice in real scenarios as they
effectively lower the number of infected cases.

C. SCENARIO 3: USING SDMs - ISOLATION
1) EXPERIMENTAL SETTING
In this validation scenario, we analyze the sensitivity of
the model to the implementation of isolation measures (see
Section IV-C1). Specifically, we studied how changes in the
parameter βisolation, representing the willingness of an agent
to enter the isolation state if infected, reflect on the number
of spreaders. We ranged the parameter in the interval [0, 1].
Note that the scenario with βisolation = 0.0 corresponds
to the unmitigated scenario when no measures are being
applied. Modifying the parameter βisolation means regulating
when an infected agent enters the isolation state (the higher,
the sooner). Further, the probability of entering the isolation
state is also proportional to the number of infected agents met
(the higher the number, the higher the probability). The time

spent by each agent in this state is strictly dependent on the
recovery probability as the agent may exit the isolation only
if it becomes susceptible again. Having set the simulation
parameters as described in Table 1, the upper bound to the
time an agent remains in isolation is 7 days on average (see
Section V-C).

2) DISCUSSION
Table 4 shows the experiment results up to βisolation = 0.5
as the fraction of infected drastically drops out even for
small values of the parameter. In this case, inflast , infpeak , and
inflower do not report the total fraction of infected, but the
fraction of agents that can still spread the infection, i.e., the
agents that are sick but not isolated. Increasing the value
of βisolation has a sensible impact on the overall spreading
since - as we can see from column isolatedlast - the majority
of the agents will eventually enter the isolation state, and
as a such, they will no more spreading the pathogen. That
results in a minimum number of effective spreaders. In a
real scenario, the effectiveness of such intervention is strictly
dependent on the easiness and the availability of tools to
test whether a person is infected. Nevertheless, this simple
experiment emphasizes the critical importance of effectively
identifying contagious individuals to decrease the epidemic
curve.

As expected, both damages Da and Dl reflect that at
least 50% up to 87% of the agents are isolated, preventing
them from seeing other agents or visiting locations. Fixing
βisolation = 0.5, agents lose on average the 70% of their
contacts and around the 40% of the locations. The social
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TABLE 2. Scenario 1: Using PPMs. Fraction of infected agents (averaged over all simulation runs) at the peak (infpeak ) and the lowest value (inflower ) of
the infection, and the end of the simulation (inflast ) when αp agents use PPMs. Each value is followed by the standard deviation. In all scenarios,
the damage of the intervention is 0.0.

TABLE 3. Scenario 2: Using EMs. Fraction of infected (averaged over all simulation runs) at the peak (infpeak ) and the lowest value (inflower ) of the
infection, and the end of the simulation (inflast ). Each value is followed by the standard deviation. The table also reports whether contagions are only
due to indirect contacts or to both direct and indirect contacts (Type of contagion) and whether sanitization procedures are in place (sanitize). In all
scenarios, the damage of the intervention is 0.0.

damage Da assumes lower values for the GoT data set. Once
again, we have to recall the nature of the data set: most of the
GoT characters meet a reduced number of other characters,
thus explaining the lower values. A similar comment holds
for the commuting damage Dl .

D. SCENARIO 4: USING SDMs - QUARANTINE
1) EXPERIMENTAL SETTING
Similar to the previous scenario, in this experiment, we study
the sensitivity of the model to the implementation of quar-
antine measures, regulated by the parameter βquarantine. This
parameter represents the willingness of an agent to enter
the quarantine state, and it is proportional to the number of
infected agents met. As for isolation measures, modifying
the parameter βquarantine means regulating when an infected
agent enters the quarantine state (the higher, the sooner). The
time spent by each agent in this state is strictly dependent

on i) whether the agent is infected and ii) the recovery
probability of the agents. If an agent has been quarantined
even though being susceptible, then it will exit the quarantine
status immediately in the next simulation step. Otherwise,
the same rules applied for exiting the isolation state hold.
It is worth recalling that our experiments simulate an SIS
compartmental epidemic model, where there is no latency
between the infection and the actual manifest of symptoms.
The absence of an Exposed state translates into safely assum-
ing that if an agent gets infected in a time step t , it will enter
the Infected state in the following time step (t + 1). Hence,
an agent may leave the quarantine state after a time window
1 (4 hours) only if it is susceptible; otherwise, it will remain
quarantined until it heals. Clearly, in a compartmental model
including the Exposed state, the quarantine should last more
than the time required by the symptoms to become evident or
to have a test result.
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TABLE 4. Scenario 3: Using SDMs - Isolation. Fraction of infected but not isolated agents (averaged over all simulation runs) at the peak (infpeak ) and the
lowest value (inflower ) of the infection, and the end of the simulation (inflast ). The column isolatedlast reports the average fraction of isolated agents at
the end of the simulation. Da and Dl represent the social and commuting damage of the intervention. Each value is followed by the standard deviation.

We ranged the parameter in the interval [0, 1]. Note that
the scenario with βquarantine = 0.0 corresponds to the unmit-
igated scenario when no measures are being applied.

2) DISCUSSION
Table 5 reports the results of this scenario ranging the param-
eter βquarantine ∈ {0.00, 0.05, 0.10, 0.20, 0.60, 0.90}. Also in
this case, inflast , infpeak , and inflower do not report the total
fraction of infected, but the fraction of agents that can still
spread the infection, i.e., the agents that are sick but not quar-
antined. As before, increasing the value of βquarantine helps
reducing the fraction of infected (see the columns inflower
and inflast ). However, even though we can observe a drastic
drop of this value, the epidemic still has a consistent proba-
bility of spreading. This behavior is due to the nature of the
intervention itself: quarantining individuals is a preventive
measure, and, as such, even susceptible agents may enter this
state. On the contrary, isolation measures directly target and
isolate infected individuals. For this reason, in the first case,
we have a lower, even still considerable, efficacy in reducing
the fraction of infected. Once again, in a real-world scenario,
the effectiveness of such intervention closely relies on the
time window during which a person may infect other people
but still does manifest any symptoms and the possibility of
observing asymptomatic spreaders.

In this scenario, we can note very low values for Da and
Dl even when βquarantine = 0.9. This outcome is well
explained by how the intervention works. As already dis-
cussed, both susceptible and infected agents may be quaran-
tined.When a susceptible enters the quarantine, it will exit the
state in the following iteration; thus, the intervention causes
negligible damage to those agents, still protecting them from

getting the infection - even if for a small time window. The
combination of these two elements (quarantining infected and
protecting susceptible agents) ensures a reasonable trade-off
between the efficacy of the intervention in reducing the num-
ber of infected and the damage brought to the population.

E. SCENARIO 5: USING SDMs - TRACING CONTACTS
1) EXPERIMENTAL SETTING
In this scenario, we evaluate the sensitivity of the model to the
introduction of a tracing application as a control strategy to
inform each agent whether and how many infected it has met
in the previous simulation steps. The parameter αi, varying
in the range [0, 1], regulates the fraction of the population
adopting the tracing technology. The scenario with αi = 0.0
corresponds to the unmitigated scenario when no measures
are being applied. The parameter βtracing controls the proba-
bility that an agent enters the quarantine state, based on the
number of infected the agent knows it has been in contact.
We fixed βtracing = 0.6 tomodel that if an agent uses a tracing
application, it will be more likely to enter the quarantine
state if needed. As expected, we traced the contacts between
individuals only if both agents are using the tracing measure.

2) DISCUSSION
Table 6 shows the results for αi ∈ {0.00, 0.25, 0.50,
0.75, 1.00}. In line with the previously simulated interven-
tions, the more agents adopt the measure, the more the inter-
vention effectively reduces the fraction of infected. When the
whole population adopts the tracing technology, the epidemic
trend drastically drops in all scenarios. Nevertheless, at least
50% of the agents must use the application to observe a
significant reduction. Comparing this experiment with the
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TABLE 5. Scenario 4: Using SDMs - Quarantine. Fraction of infected but not quarantined agents (averaged over all simulation runs) at the peak (infpeak )
and the lowest value (inflower ) of the infection, and the end of the simulation (inflast ). The column quarantinedlast reports the average fraction of
quarantined agents at the end of the simulation. Da and Dl represent the social and commuting damage of the intervention. Each value is followed by
the standard deviation.

quarantine scenario when βquarantine = 0.6 (see Table 5),
we can note a higher fraction of quarantined agents on aver-
age at the end of the simulation. This outcome is explained
by how the different interventions work in the simulation.
An agent may decide to enter the quarantine state according
to both the probability βquarantine and the number of infected
agents met during each interval 1. When the agent uses the
tracing application, it may enter the quarantine still based
on the probability βquarantine but, this time, the number of
infected agents is evaluated over the previous intervals (start-
ing from the interval when the intervention is applied). Hence,
the number of infected agents met is generally higher in
this second case and, consequently, the overall probability of
entering the quarantine state.

Consistently with the previous experiment on quarantining
individuals (see Section VI-D), the social damage Da and
especially the commuting damage Dl assume low if not
negligible values. The explanation for that is the same as
discussed in the quarantine scenario. These results suggest
the potential impact such measure can have, even though,
in the real world, policymakers have to consider a plethora of
constraints when implementing similar interventions, among
all privacy concerns.

F. SCENARIO 6: USING SDMs - AVOIDING CROWDING
1) EXPERIMENTAL SETTING
In this validation scenario, we examine the sensitivity of
the model when avoiding crowding measures are applied.
As described in Section IV-C4, this intervention consists in
increasing the social distancing between individuals, which
implicitly means reducing the number of possible direct inter-
actions. To implement such a policy for the BLEBeacon data
set, we reduced the number of agents who could access the
building during a day by simulating only half of the entire
population’s movements. We applied a similar approach for

the Foursquare and the GoT data sets, halving the number of
agents that could access a given location.

2) DISCUSSION
Table 7 reports the results of this experiment. As for the
EMs (see Section VI-B), we analyze the epidemic spreading
reporting the number of infected i) considering both direct
and indirect contagion pathways and ii) focusing only on the
contribution made by direct contacts. Also in this scenario,
when we look at the final fraction of infected due to both
types of interactions, we can observe little or no impact on
the epidemic spreading. On the other hand, we can note that
the introduction of such a measure effectively lowers the
fraction of infected due to direct contacts and the lowest peak
of the infection. This outcome is somewhat expected given
the nature of the intervention itself. This measure does not
affect interactions between people and environments; hence
the pathogen is free to propagate via indirect contacts.

The intervention cost in terms of damage is tendentially
higher than the other scenarios described except for the iso-
lation measure. These values are clearly explained by the
fact that some agents cannot enter a location if this already
contains a number of agents equal to half of its total capacity
(evaluated over the unmitigated scenario).

G. SCENARIO 7: USING SDMs - LOCATION CLOSURE
1) EXPERIMENTAL SETTING
In this last validation scenario, we assess the model’s sen-
sitivity to the implementation of lockdown measures (see
Section IV-C5). We selected the locations to close according
to two possible scenarios. In the first scenario, we randomly
chose the locations; in the second configuration, we picked
the most crowded places first. The parameter αe regulates
the number of locations to close. We ranged it in the inter-
val [0, 1] to simulate partial and complete closure policies.
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TABLE 6. Scenario 5: Tracing. Fraction of infected but not quarantined agents (averaged over all simulation runs) at the peak (infpeak ) and the lowest
value (inflower ) of the infection, and the end of the simulation (inflast ) when αtracing agents use a tracing application. The column quarantinedlast
reports the average fraction of quarantined agents at the end of the simulation. Da and Dl represent the social and commuting damage of the
intervention. Each value is followed by the standard deviation.

The scenario with αe = 0.0 corresponds to the baseline
scenario when no measures are being applied.

2) DISCUSSION
Table 8 reports the results of the application of the two
tested lockdown scenarios, simulating an epidemic spreading
varying the parameter αe ∈ {0.00, 0.30, 0.60, 0.90, 1.00}.

If we look at the final fraction of infected at the end
of the simulation (column inflast ), we can note how such
measure has a different impact according to the nature of
the data set. For instance, we need to deny access to all
rooms within the building described by the BLEBeacon data
if we want to reduce the contagions drastically. In addition,
closing the locations giving priority to crowded places does
not seem to improve the performance over closing random
rooms when αe ≤ 0.90. Although surprising at first glance,
the explanation for this outcome is due to the fact that the
number of check-ins per location is evaluated over the whole
data set and not only over the portion when the interven-
tion is applied. Thus, the most crowded locations may con-
tain the most check-ins at the start of the simulation rather
than the end, leading to the closure of less crowded rooms
when the intervention is applied. On the other hand, we can
observe a completely different picture for the Foursquare data
set, in which closing 30% of the most crowded locations
leads to a notably decreasing in the fraction of infected. Once
again, this outcome is due to the characteristic of the data. The
majority of the check-ins of the original data set happens in a
limited amount of places, like transportation or general enter-
tainment. Hence, even closing a limited number of places
brings down the epidemic. We have a similar outcome for the
GoT scenario in which closing the most crowded locations
generally achieves better results in lowering the fraction of
infected than closing random locations. The results of these
two scenarios are aligned with the measures we would expect
in a real-life scenario. In fact, if we consider lockdown poli-
cies issued for the COVID-19 pandemic, we can note that they

usually tended to penalize aggregation and leisure places.
Clearly, we can note very high values for the commuting
damage Dl due to the locations closed by the intervention.
As a consequence, also the social damage Da assumes high
values when αe ≥ 0.50 as agents cannot meet other agents
in a closed place. When all locations are closed, we have the
maximum damage.

VII. THE EFFECT OF COMBINING NPIs ON THE EPIDEMIC
DYNAMICS
In Section VI, we investigated the model output when a single
intervention is applied. Other than evaluating themodel sensi-
tivity, we thus explored, at the same time, the effects of apply-
ing a single NPI in terms of effectively reducing the number
of infected and costs required to implement the given mea-
sure. However, we expect to see the application of different
interventions combined to contain the epidemic spreading in
a real-world scenario. Which NPIs should be applied or how
strict the measures should be implemented closely depends
upon the gravity of the current situation, like the pressure on
the hospitalization system. For instance, we experienced rigid
lockdown policies during the first and second waves of the
COVID-19 pandemic, while even the use of face masks was
lifted during summer 2020.

Current literature on the topic investigates the application
of NPIs based on the complexity and heterogeneity of the
data fed into the ABM. When the model is highly detailed,
like in the case of France [35], Boston [3], Seattle, and
New York [4], the simulation usually focuses on reproducing
and improving the measures really implemented by the gov-
ernment. In the case of simpler models, other works manually
combine several NPIs and examine their outcomes [13], [59],
[73]. In this work, we tackle the issue of identifying feasible
combinations of NPIs by approaching the problem under an
optimization framework with two contrasting objectives - the
fraction of infected and the damage brought by the interven-
tion. The optimal solutions (in terms of NPI combinations)
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TABLE 7. Scenario 6: Using SDMs - Avoiding Crowding. Fraction of infected (averaged over all simulation runs) at the peak (infpeak ) and the lowest value
(inflower ) of the infection, and the end of the simulation (inflast ). Da and Dl represent the social and commuting damage of the intervention. Each value
is followed by the standard deviation. The table also reports whether avoiding crowding measures are applied (avoiding crowding).

TABLE 8. Scenario 7: Using SDMs - Location closure. Fraction of infected (averaged over all simulation runs) at the peak (infpeak ) and the lowest value
(inflower ) of the infection, and the end of the simulation (inflast ). Da and Dl represent the social and commuting damage of the intervention. Each value
is followed by the standard deviation. The table also reports the policy according to which locations are closed (Sorting).

are thus found by exploring the model’s parameter space via
a multi-objective genetic algorithm. Hence, no handcrafted
configuration is required. In this manner, we are able to unbi-
asedly explore the model’s behavior without any assumption
about the interaction of model parameters and their effects
on the overall simulation. In the following, we will briefly
describe the problem of exploring the parameter space of

ABMs, the method used for our experiments, and the results
obtained. A discussion section in which we review possible
real-world implications follows.

A. MODEL EXPLORATION
ABMs are usually characterized by a large number of
controlling parameters and range of parameter values,
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a significant amount of computation required to run a model,
and a stochastic nature which requires multiple trials to
assess the model’s behavior [61]. As the number of param-
eters increases, it becomes unfeasible to manually handle
the exploration of the parameter space, which comprises the
selection of parameter selection, the simulation run, and the
evaluation of the output [15]. The process of i) choosing a
starting configurations, ii) running the simulation, iii) evalu-
ating the outcomes, and iv) selecting new candidates is known
as Simulation Optimization (SO) process [26], [64]. A SO
framework can be formally described as a general optimiza-
tion problem whose goal is to find a setting of controllable
parameters that minimizes a given objective function, i.e.,

min
θ∈2

J (θ ), (1)

where 2 is the admissible decision space, θ ∈ 2 is the
vector of input variables representing a single configuration,
and J (θ ) is the scalar objective function estimated via the
simulation. Because of their nature, simulations provide a
noisy estimate of J (θ ); for this reason, themost common form
for J is an expectation

J (θ ) = E[L(θ, ε)],

where and L(·) is the sample performance measure and ε
represents the stochastic effect in the system.

Having formalized the SO process as a general optimiza-
tion problem, the parameter space search can thus be done
via any optimization algorithms [64]. The literature widely
explored genetic algorithms (GAs) in this direction, working
on parameter-search and exploration in ABMs, as well as
on the problem of parameter-search in general [61]. When
the optimization problem is multi-objective (J (θ ) ∈ Rn),
multi-objective GAs (MOGAs) come into play, whose cen-
tral idea lies in generating the optimal Pareto Front in the
objective space so that it is not possible to further enhance
any fitness function without disturbing the other fitness func-
tions [46]. In this work, we use the algorithm NSGA-II (fast
elitist non-dominated sorting genetic algorithm), a Pareto-
based MOGA proposed by Deb et al. [17]. This algorithm
alleviates the problems of lack of elitism, the need of sharing
parameters, and high computation complexity characterizing
its predecessor NSGA [60], still able to find a diverse set of
solutions and converge near the actual Pareto-optimal set.

For an exhaustive description of the SO process and a
review on genetic algorithms, we refer the reader to [26], [64]
and [42], respectively.

B. EXPERIMENTAL SETTING
As introduced in the previous paragraphs, we formalize the
parameter space exploration of our model under the MOGA
framework. Specifically, we used the NSGA-II algorithm and
its Julia implementation, available at the following GitHub
repository.2 We examine the multi-objective problem of bal-
ancing the use of NPIs to control an epidemic spreading

2https://github.com/gsoleilhac/NSGAII.jl

and the negative impact on the overall functioning of society
considering as contrasting objectives i) reducing the final
fraction of infected at the end of the simulation, ii) the social
damage Da, and iii) the commuting damage Dl .
Each individual (i.e., a setting) is described by a 7-element

vector, where each item, ranging in the interval [0, 1], repre-
sents whether or not a given NPI is applied and to what extent.
We considered the same measures described in Section IV
and analyzed in Section VI, namely:

• PPMs. Measure regulated by the parameter αp, describ-
ing the fraction of agents using PPMs.

• EMs. Measure regulated by the boolean parameter
sanitize, representing whether locations are regularly
sanitized.

• SDMs

– Isolation. Intervention regulated by the parameter
βisolation, representing the willingness of an agent
to enter the isolation state if infected.

– Quarantine. Intervention regulated by the parame-
ter βquarantine, describing the willingness of an agent
to enter the quarantine state.

– Tracing. Measure regulated by the parameter αi,
indicating the fraction of the population adopting
tracing technologies.

– Avoiding crowding. Measure regulated by the
boolean parameter avoiding crowding, representing
whether avoiding crowding measures are applied.

– Lockdown. Intervention regulated by the parameter
αe, describing the fraction of locations to close.
We picked the most crowded places first, given the
best outcome in terms of reduction on the fraction
of infected evaluated in Section VI-G.

The boolean parameters are considered true in the simu-
lation if the value of the corresponding item in the individual
is at least equal to 0.5.

We runNSGA-II for 100 generations, using a population of
100 individuals. The remaining parameters of the simulation
are described in Section V.

C. RESULTS
In this section, we go through the outcomes of our anal-
ysis, first observing the Pareto front output of the algo-
rithm NSGA-II. We then zoom into the characteristics of
the solution nearest to the ideal point, trivially identified
with the origin (0, 0, 0), indicating that there are no infected
and no damage due to the interventions. This solution is
further compared with the two NPI configurations reaching
the lowest number of infected and the lowest damage. We
show the characteristics of each configuration in a radar
chart, in which we report all interventions counterclockwise
according to their damage. The color of the external circu-
lar shape (yellow-orange-red) encodes the damage of each
intervention: the darker, the higher. Visually, low-damage
solutions tend to pick interventions in the upper half of the
circle. On the contrary, high-damage configurations tend to
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select higher values for interventions located in the lower
half of the chart. We finally discuss how these configurations
impact the epidemic spreading and the damage paid for their
application.

In more detail, every plot highlights three NPI config-
urations: i) the configuration reaching the lowest number
of infected at the end of the simulation (Lowest-Infected,
depicted in blue), the configuration obtaining the lowest
damage (Lowest-Damage, depicted in orange), and iii) the
configuration nearest to the optimal point (0, 0, 0) accord-
ing to the euclidean distance (Nearest-to-Ideal, depicted in
green). We also added to each plot the two settings when
no interventions are in place (No-NPIs) and when all NPIs
are used to the fullest (Full-NPIs). All configurations come
from the Pareto optimization and lies on the Pareto front
analyzed. It is worth noting that the optimization algorithm
explores the overall Pareto front; however, the NPI combina-
tions that decision-makers should investigate are the solutions
that guarantee the best balance between the three contrasting
objectives. As a matter of fact, in this specific context is
straightforward to handcraft an intervention that brings no
damage (trivially selecting no NPIs or only PPMs or EMs as
they provide no damage) or aims to minimize the number of
infected (e.g., implementing all NPIs available). Still, none of
these interventions are truly useful in a real-world situation.
The optimization algorithm can hence guide policymakers
towards examining the best NPI combination according to the
actual data.

1) THE BLEBeacon SCENARIO
This paragraph discusses the outcome of the BLEBeacon
data set, resembling a social event happening in a month
timeframe in a university building (see Section V-D). Figure 8
reports the results.

As we can see in Figure 8a, the Pareto front evaluated
by the algorithm NSGA-II spans over a broad spectrum of
solutions, but, as observed in the introduction of this section,
we will focus on the characteristics of the combination near-
est to the optimal point (Nearest-to-Ideal). The first element
to note is that this NPI configuration only selects policies
located in the yellow-orange zone of the radar chart, causing
the lowest damage (see Figure 8b(ii)). Among those, we can
observe that all agents use PPMs (αp = 0.99) and that
locations are regularly cleaned. We can further notice that
almost all agents exploit tracing technologies (αi = 0.97)
and that the probability of entering the quarantine state is
relatively high (βquarantine = 0.63). This combination trans-
lates into an overall significant probability for an agent to
self-quarantine itself. It is interesting to observe that the
configuration Nearest-to-Ideal can reduce by 70% the final
number of infected with the only use of preventive measures.
Clearly, more restrictive measures should be used in this
kind of environment to reduce the contagion further. The
application of this intervention brings to a social damage
Da of 0.50, meaning that each agent loses, on average, half
of the individuals it should have met in normal conditions.

The commuting damageDl is 0.26, meaning that agents lose,
on average, a quarter of the locations they should have visited
in normal conditions.

As expected, the configuration conveying to the lowest
damage favors zero-damage interventions, like PPMs and
EMs (see Figure 8b(iii)). Nevertheless, even though the final
fraction of infected is lowered only by a small percentage,
we can note that the overall trend (and the lowest peak) after
introducing the intervention is generally reduced than the
unmitigated scenario (see Figure 8c). Regarding the config-
uration bringing to the lowest fraction of infected, we can
observe that this configuration selects the NPIs with the
highest damage, located in the red zone of the radar chart
(see Figure 8b(i)). In particular, when this combination is
applied, almost all rooms of the building become inaccessible
(αe = 0.87), thus preventing the pathogen from spreading
and bringing to very serious damage. For this reason, this
configuration achieves results comparable to the intervention
implementing all protective measures (Full-NPIs).

2) THE FOURSQUARE SCENARIO
In this paragraph, we discuss the outcomes for the Foursquare
data set, resembling real-life movements of users of the
Foursquare social network in Tokyo (see Section V-D).
Figure 9 reports the results.

As we can note from the Pareto front plotted in Figure 9a,
all solutions evaluated by the algorithm encode an NPI
combination able to reduce the fraction of infected in the
unmitigated scenario by at least 25%, paying highly vari-
able damage. In this case, the Nearest-to-Ideal NPI config-
uration (see Figure 9b(ii)) appears quite different from the
corresponding solution analyzed for the BLEbeacon data set.
We can still observe a high value for αp = 0.97, meaning
that the majority of the agents adopt PPMs and the use of
sanitization measures. However, contrarily to BLEBeacon,
very low values are selected for the parameters βisolation,
βquarantine and αi, equal to 0.002, 0.06 and 0.013 respec-
tively. Interestingly, this NPI combination can still halve the
fraction of infected and hence decrease the epidemic trend
(see Figure 9c). At the same time, the damage brought by the
intervention is minimal (Da = 0.10, Dl = 0.05) and in prac-
tice due to the reduced percentage of quarantined and isolated
agents. The most surprising aspect of this outcome is that
despite the lack of lockdown measures, the epidemic trend
still constantly diminishes. This result should be contextual-
ized to the sparse nature of the data set; however, it suggests
the fundamental role of PPMs and EMs in reducing an epi-
demic spreading at zero-damage also in extremely crowded
places.

Regarding the configurations at the extremes of the
Pareto front, the Lowest-Damage configuration almost cor-
responds to the Nearest-to-Ideal (see Figure 9b(iii)); while
the Lowest-Infected combination (see Figure 9b(i)) reaches
the same effectiveness of Full-NPIs, with a lower commuting
damage Dl and a non-significant difference for the social
damage Da (see Figure 9c).
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FIGURE 8. BLEBeacon data set.

3) THE GoT SCENARIO
In this paragraph, we discuss the outcomes for the GoT data
set, representing the characters’ mobility pattern of the GoT
TV series (see Section V-D). Figure 10 reports the results.

As for the Foursquare data set, all the solutions elaborated
by the genetic algorithm can at least halve the fraction of

infected in the unmitigated scenario with variable damages
(Figure 10a). Focusing on the configuration Nearest-to-Ideal
(see Figure 10b(ii)), we can notice values similar to the
solution evaluated for the BLEBeacon scenario. As before,
almost all agents use PPMs (αp = 0.97) and have a proba-
bility βquarantine = 0.72 of self-quarantine themselves, while
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FIGURE 9. Foursquare data set.

locations are regularly sanitized. On the other hand, we can
note a lower use of tracing technologies, with only 20% of
the agents adopting this measure. Once again, the nature
of the data set may explain the massive use of preventive
measures, such as quarantine policies. In this scenario, only

a limited number of characters move across most of the
locations, thus coming in contact with many other characters.
Hence, increasing the probability of entering the quarantine
state corresponds to a higher chance to quarantine agents,
especially the super-spreader characters. Interestingly, this
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FIGURE 10. GoT data set.

NPI combination can decrease by 75% the final fraction
of infected without imposing strict restrictions that agents
have to follow. Quantitatively speaking, we can observe a
modest value for the social damageDa (0.19) and a negligible
commuting damage Dl (0.02).

As for the BLEBeacon scenario, the configuration Lowest-
Infected perfectly overlaps with the Full-NPIs even though
selecting a different NPI combination (see Figure 10b(i)).
Also in this case, the Lowest-Damage solution corresponds
to the Nearest-to-Ideal (see Figure 10b(iii)).

140960 VOLUME 9, 2021



A. Antelmi et al.: Modeling and Evaluating Epidemic Control Strategies With High-Order Temporal Networks

D. DISCUSSION
In the following, we sum up the most interesting elements
from our experiments and discuss some real-world implica-
tions of these findings.

1) NO NPIs CAN RULE THEM ALL
If we focus our attention on the Nearest-to-Ideal NPI con-
figuration, we can note how it largely varies across all data
sets. For instance, we can observe that in the BLEBeacon
data set, this NPI combination heavily counts on the prob-
ability of the agents to self-quarantine, translated into the
massive use of tracing technology and a high probability
of entering the quarantine state. We can observe a similar
scenario in the GoT data set, in which the use of tracing
measures is decreased, but the self-quarantine probability
is still considerable. Entirely opposite, the Nearest-to-Ideal
configuration in the Foursquare scenario exploits a reduced
quarantine probability and no tracing policies. Clearly, these
results reflect the nature of the data fed into the simulation
model. The BLEBeacon data set represents a closed environ-
ment; hence, it is easier for a pathogen to spread. As a conse-
quence, stricter measures should be implemented. Although
we shrank four months of check-ins into a single month
timeframe, the Foursquare data set remains highly sparse,
with few locations containingmost user check-ins. As already
observed, the sparse nature of this data may partially explain
why the Nearest-to-Ideal solution selects little or zero values
for isolation, quarantine, and tracing measures. Similarly,
the mobility patterns encoded by the GoT data set make it
reasonable to use tracing and quarantine measures, which
are preventive interventions, as GoT characters tend to meet
in communities, and only a few of them travel across many
different places (see Section V-D). In a real-world scenario,
these results translate into applying different combinations of
NPIs and tailor their severity according to local specific data,
like the current epidemiological situation and other socio-
demographic features. This outcome is further aligned with
the guidelines of the European Centre for Disease Prevention
and Control [20] and with previous literature [70].

2) PLEASE, WEAR YOUR MASK AND WASH YOUR HANDS
Other than a widespread slogan to raise awareness in the
population to fight the COVID-19, this phrase well describes
another primary outcome of our experiments. Despite the
different nature of the three data sets, we can easily spot
that all the Nearest-to-Ideal NPI configurations share the
application of PPMs and EMs, often selected in combination
with other interventions (located in the yellow-orange zone
of the radar chart, meaning that they generally cause low
damage). Nonetheless, as discussed in the description of the
results for the Foursquare experiment, the sole application of
those interventions can still induce a decrease in the epidemic
trend with the introduction of no damage. This result may
have critical importance in a real-world situation as PPMs and
EMs give a fundamental contribution in slowing the epidemic
spreading at zero damage even in crowded locations and

gathering places. However, the effectiveness of these policies
remains strictly dependent upon the correct use made by the
population.

3) NOT A TREASURE HUNT, BUT A GUIDED SEARCH
As discussed in Section VII-A, GAs are widely exploited
in ABMs to explore the best combination of parameters for
the model. In the specific context of epidemic simulations,
GAs may become a valuable tool to support policymakers
as they can manually analyze some of the best solutions to
control a pandemic and tune them according to specific needs.
For instance, this approach can help investigate whether it is
possible to implement an NPI combination that performs as
well as closing gathering places. In this work, we examined
GAs to optimize the implementation of NPIs while preserv-
ing two contrasting objectives: i) the fraction of infected and
ii) damage brought by the intervention. We considered two
types of damage to include the need of people to meet
other individuals (Da) and the possibility of visiting a given
location (Dl), e.g., simulating a person going to jog. GAs
represents a general framework as the objective functions to
optimize can be defined according to a precise need and based
on the specific target to study. For example, an objective can
model the economic damage caused by closing given busi-
ness categories or the cost of hospitalizations. Similarly, our
TVH framework can be tuned according to the specific com-
partmental model to implement, and the high-order network
can be instantiated according to specific socio-demographic
data.

4) COMMENT ON THE USE OF GAs
In this study, we used 100 individuals and 100 generations
because of the long computational time required to run each
simulation (e.g., forty minutes on average on the Foursquare
data set) and because the implementation of the NSGA-II
algorithm does not currently support the parallel evaluation of
the individuals. However, the population size and the number
of generations should be tuned to the complexity of the model
when simulating real-world scenarios.

VIII. CONCLUSION AND FUTURE WORK
NPIs gained attention during the SARS-CoV-2 pandemic
in 2019 as the only force to resist an unforeseen epidemic
diffusion in the absence of effective pharmaceutical inter-
ventions. Thus, deeply understanding the potential impact of
introducing regulation policies aiming to control and reduce
the epidemic propagation is of fundamental importance to
minimize the effect on both the economy and the psycholog-
ical wellness of the society.

In this work, we delve into discussing how such con-
trolling measures can be embedded within an epidemiolog-
ical model based on high-order relationships between people
and environments, mimicking direct and indirect contagion
pathways over time. To model and evaluate the impact of
NPIs, we provide a formal definition of each intervention
for the epidemiological framework based on Time Varying
Hypergraphs. We evaluated each NPI applying the SIS com-
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partmental model into anABM that exploits ourmethodology
to simulate interactions between agents and environments by
designing the agent mobility behavior accordingly real-world
data sets. The results of our experiments resemble previous
literature and the guidelines of the WHO. Introduced alone,
each NPI cannot extinguish an epidemic, even though some
drastic measures, such as isolation and strict lockdown, have
a higher impact in controlling the pathogen diffusion and
considerably reduce its spread as indicated by the results in
Section VI. The discussed outcomes further highlight that
different combination of NPIs and their severity should be
tailored according to local specific epidemiological data and
that basic hygiene procedures are fundamental to reduce
the spreading. Broadly translated, our findings indicate that
the effects of NPIs in controlling are indisputable; how-
ever, the potential benefit of introducing NPIs in our society
is functional to a massive and correct application in the
population.

To enrich our TVH framework, we are currently working
towards developing and analyzing immunization strategies
that exploit the high-order nature of the underlying contact
network. We will further develop other compartmental mod-
els to offer a complete framework within which higher-order
diffusion phenomena can be examined.
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