L))

Check for
updates

A Survey on Hypergraph Representation Learning

ALESSIA ANTELMI, Universita degli Studi di Torino, Italy

GENNARO CORDASCO, Universita della Campania “Luigi Vanvitelli”, Italy

MIRKO POLATO, Universita degli Studi di Torino, Italy

VITTORIO SCARANO and CARMINE SPAGNUOLO, Universita degli Studi di Salerno, Italy
DINGQI YANG, University of Macau, Macau SAR, China, China

Hypergraphs have attracted increasing attention in recent years thanks to their flexibility in naturally model-
ing a broad range of systems where high-order relationships exist among their interacting parts. This survey
reviews the newly born hypergraph representation learning problem, whose goal is to learn a function to
project objects—most commonly nodes—of an input hyper-network into a latent space such that both the
structural and relational properties of the network can be encoded and preserved. We provide a thorough
overview of existing literature and offer a new taxonomy of hypergraph embedding methods by identifying
three main families of techniques, i.e., spectral, proximity-preserving, and (deep) neural networks. For each
family, we describe its characteristics and our insights in a single yet flexible framework and then discuss the
peculiarities of individual methods, as well as their pros and cons. We then review the main tasks, datasets,
and settings in which hypergraph embeddings are typically used. We finally identify and discuss open chal-
lenges that would inspire further research in this field.

CCS Concepts: « General and reference — Surveys and overviews; - Mathematics of computing —
Hypergraphs; - Computing methodologies — Machine learning;

Additional Key Words and Phrases: Hypergraph representation learning, hypergraph embedding, hypergraph
neural networks, hypergraph convolution, hypergraph attention

ACM Reference format:

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and Dingqi Yang.
2023. A Survey on Hypergraph Representation Learning. ACM Comput. Surv. 56, 1, Article 24 (August 2023),
38 pages.

https://doi.org/10.1145/3605776

This work has been partially supported by the spoke “FutureHPC & BigData” of the ICSC—Centro Nazionale di Ricerca in
High-Performance Computing, Big Data and Quantum Computing funded by European Union-NextGenerationEU, Univer-
sity of Macau (SRG2021-00002-I0TSC), and the Science and Technology Development Fund, Macau SAR (0047/2022/A1).
Authors’ addresses: A. Antelmi (corresponding author) and M. Polato (corresponding author), Universita degli Studi di
Torino, Torino, Italy; email: {alessia.antelmi, mirko.polato}@unito.it. G. Cordasco, Universita della Campania “Luigi Van-
vitelli”, Caserta, Italy; email: gennaro.cordasco@unicampania.it. V. Scarano and C. Spagnuolo, Universita degli Studi di
Salerno, Fisciano, Italy; email: {vitsca, cspagnuolo}@unisa.it. D. Yang, University of Macau, Macau SAR, China; email:
dingqiyang@um.edu.mo.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/08-ART24 $15.00

https://doi.org/10.1145/3605776

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://orcid.org/0000-0002-6366-0546
https://orcid.org/0000-0001-9148-9769
https://orcid.org/0000-0003-4890-5020
https://orcid.org/0000-0001-8437-5253
https://orcid.org/0000-0002-8267-9808
https://orcid.org/0000-0002-6831-0422
https://doi.org/10.1145/3605776
mailto:permissions@acm.org
https://doi.org/10.1145/3605776
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605776&domain=pdf&date_stamp=2023-08-26

24:2 A. Antelmi et al.

1 INTRODUCTION

Hypergraphs are the natural representation of a broad range of systems where group (or high-order
or many-to-many) relationships exist among their interacting parts. Technically speaking, a hy-
pergraph is a generalization of a graph where a (hyper)edge allows the connection of an arbitrary
number of nodes [24]. Such structures can easily abstract social systems where individuals interact
in groups of any size [17, 102]; for instance, in the case of a co-authorship collaboration network,
a hyperedge may represent an article and link together all authors (nodes) having collaborated
on it [10, 48, 49, 74, 86, 120, 139, 143, 159, 171] (see Figure 1). Similar situations, characterized by
high-order interactions, also exist in biology [56, 132], ecology [47, 58], and neuroscience [83, 106].
Despite their powerful expressiveness, hypergraphs have been underexplored in the literature (in
favor of their graph counterpart) because of their inherent complexity and the lack of appropriate
tools and algorithms. Recently, the trend has been drifting, thanks to a rising number of systematic
studies demonstrating how the transformation of a hypergraph to a classical graph either leads
to an inevitable loss of information or creates a large number of extra nodes/edges that increases
space and time requirements in downstream graph analytic tasks [2, 17, 175, 178]. Specifically,
hypergraphs have been proven to be a critical tool to use when the underlying system to study
exhibits highly non-linear interactions between its constituents [17]. In practice, this considera-
tion translates into using hyperedges to model (possibly indecomposable) group interactions that
cannot be described simply in terms of dyads (and, hence, via graphs). For instance, hypergraph
modeling has been exploited to embed key sociological concepts such as homophily (i.e., the
influence a group exerts on a single individual) and conformity (i.e., group pressure, namely the
tendency of an individual to align their beliefs to those of their peers, often reinforced by the
nature of shared opinions) to investigate the dynamics of opinion formation [81, 115, 116, 130]
and social influence diffusion [6, 142, 157, 195, 196] when groups are explicitly taken into account.
Similarly, hypergraphs have been used to model epidemic-spreading processes to expressly
account for community structure and non-linear infection pressure [5, 22, 71], and group dynam-
ics [39, 82, 92, 107]. Throughout this review, we will discuss other application scenarios in which
hypergraph modeling could be more beneficial than traditional graph modeling and elaborate on
the characteristics of the many-to-many relations abstracted and the specific tasks addressed.

All graph-related problems and corresponding challenges still hold for the hypergraph-based
setting, where the computational cost is even more significant due to the presence of high-order
interactions [112, 135]. In this sense, the task of hypergraph representation learning (a.k.a. hy-
pergraph embedding) further assumes a critical role in effectively and efficiently solving analytic
problems. Embedding a network—either a graph or a hypergraph—means projecting its structure
and possibly additional information onto a low-dimensional space where the structural and se-
mantic information (e.g., nodes’ neighborhood and features) is ideally preserved. The underlying
idea of this procedure is that representing the nodes and (hyper)edges as a set of low-dimensional

Articley
Articley
Articleg

Articley

Fig. 1. An example of co-authorship hypergraph where each node represents an author, and each hyperedge
connects all authors that have contributed to the same article.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:3

"g

£ 800 |

% @

I 5 600 1

£ g

ué Zg‘. 400 1

E 200 ,

2 O I T T
1970 1980 1990 2000 2010 2020

Publication year

Fig. 2. Number of peer-reviewed publications related to hypergraphs from 1970 to 2021 (source: Scopus).

vectors allows the efficient execution of the traditional vector-based machine learning algorithms
on the (hyper)graph. As for graphs, the problem of hypergraph embedding, thus, lies in the over-
lap of two traditional research problems: hypergraph analytics and representation learning [26].
While the first problem aims to mine useful information from the hyper-network structure, rep-
resentation learning seeks to learn compact representations (i.e., latent feature vectors) when ad-
dressing, for instance, classification [10, 138, 194], link prediction [45, 176, 191], and recommen-
dation [152, 153, 181] tasks. Learning a latent representation of hypergraphs, rather than graphs,
enables the exploration of the high-order correlation among data and the indecomposable nature
of certain group relations to build more comprehensive representations, leading to better perfor-
mance in practice [136, 179].

As witnessed in Figure 2, for the last decade, a growing body of work has devoted its efforts to
investigating hypergraphs to design more effective solutions in various domains [17]. Still, so far,
there is no systematic exploration of hypergraph embedding methods.

This survey aims to fill this gap by providing a thorough overview of existing literature and offer-
ing a taxonomy of hypergraph embedding techniques. Our broadest intent is to develop a compre-
hensive understanding and critical assessment of the knowledge of this newly born research area.

Differences with previous surveys. Current surveys [54, 186] closely related to ours substan-
tially differ in the topics discussed and the literature covered.

The work from Gao et al. [54] deals with the hypergraph learning problem (sometimes called
hypergraph regularization), which is a related but different topic than hypergraph representation
learning. According to [54], hypergraph learning is the process of passing information along the
hypergraph topology in analyzing the structured data and solving problems such as node classifica-
tion. Learning hypergraph embeddings is not the goal of hypergraph learning, although both tasks
share some concepts and ideas (e.g., [194]). Further, the authors thoroughly analyze hypergraph
generation methods (not covered in this survey).

The most recent survey from Zhang et al. [186] presents a shallow and brief excursus on hy-
pergraph representation learning techniques, offering a single-level taxonomy similar to the one
provided in this survey (see Section 5). However, the authors limit the discussion to a few repre-
sentative works, focusing on how to handle uncertain data using hypergraphs. Their survey also
covers some graph representation learning and hypergraph generation methods.

For the above reasons, our work can be regarded as a complement to the surveys by Gao
etal. [54] and Zhang et al. [186] since it emphasizes the task of hypergraph representation learning
by providing a series of novel contributions that are listed below.

Contributions. Our contributions can be summarized as follows:

o Inherent challenges. As hypergraphs are a generalization of graphs, some challenges are
directly inherited by the graph representation learning problem. However, the high-order

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:4 A. Antelmi et al.

nature of hypergraphs imposes additional difficulties. We discuss the classical challenges of
(hyper)graph embedding to then detail the peculiar challenges these structures pose.

o New taxonomies. We propose three taxonomies, classifying hypergraph embedding methods
based on (1) their learning approach (spectral, proximity-preserving, and neural network
techniques), (2) the structure of the input hypergraph (homogeneous/heterogeneous,
undirected/directed, uniform/non-uniform, static/dynamic, attributed/not attributed nodes,
transformation into a graph), and (3) the desired output (node/hyperedge embedding).

e Comprehensive review. The recent booming of the hypergraph representation learning
field enabled us to collect, systematically review, and characterize the whole evolution of
this research area. We describe the most representative approaches of each hypergraph
embedding class, unraveling the pros and cons of each learning mechanism and highlighting
the high-level connections among the described techniques within each category.

e Hypergraph analytic tasks. We review the discussed methods under the lens of representation
learning applications, categorizing them according to node and hyperedge-related tasks.

e Future directions. We examine the limitations of the current state of the art and propose
six potential future directions in the area in terms of problem setting, modeling techniques,
interpretability, and scalability.

Article organization. The remainder of this survey is organized as follows. Section 2 details the
paper collection process and the inclusion criteria for selecting the articles included in this survey.
Section 3 introduces the concepts and the notation we will use throughout this work. Section 4
formally defines the problem of hypergraph representation learning (see Section 4.1), describes
a taxonomy of the problem setting in terms of hypergraph embedding input and output (see Sec-
tion 4.2), and discusses the problem’s inherent challenges (see Section 4.3). Section 5 categorizes the
literature based on the embedding technique, describing spectral representation learning (see Sec-
tion 5.1), proximity-preserving (see Section 5.2), and (deep) neural network (see Section 5.3) meth-
ods, unraveling their pros and cons and comparing these three methodologies (see Section 5.4).
Section 6 presents examples of applications enabled by the hypergraph embedding methods previ-
ously described. Section 7 identifies and discusses open research challenges and future directions
in this field. Finally, Section 8 concludes this survey.

2 METHODOLOGY

Please refer to Appendix A in the online Supplemental Material.

3 FUNDAMENTALS

This section introduces the concepts we will use throughout the article, from formally defining
hypergraphs to describing how these structures can be transformed into their graph counterparts.
Table 1 lists the mathematical notation and the hypergraph-related concepts that will be explicitly
referred to in the remainder of this survey.

3.1 Hypergraphs

A hypergraph is an ordered pair H = (V, &), where V is the set of nodes,! and & is the set
of hyperedges (Figure 3(a)). Each hyperedge is a non-empty subset of nodes. The structure of a
hypergraph is usually represented by an incidence matrix H € {0,1}/V*I€l with each entry
H(v, e) indicating whether the vertex v is in the hyperedge e, i.e., H(v,e) = [[v € e]l.

!In this survey, we use the terms “node” and “vertex” interchangeably.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:5

Table 1. Summary of the Notation Used throughout This Survey

Category Symbol/Concept Interpretation
General v Boldfaced lowercase letters are used to identify vectors.
A Boldfaced capital letters are used to identify matrices.
A(i,) The indexed notation identifies the jth element in the
ith row of the matrix A.
A Calligraphic capital letters are used to identify sets.
| Al The cardinality (i.e., number of elements) of the set A.
[P] Indicator function: It equals 1 if the predicate P is true,
0 otherwise.
[n] Set of integers from 1 to n, i.e., N<,.
I, The n by n identity matrix.
diag(A) Diagonal of the matrix A.
diag(v) Diagonal matrix with its diagonal equal to v.
Hypergraph related % Vertex set, where |V| = n.
& Hyperedge set, with |E| = m.
&y, ={ee & |vee} Hyperedges containing the vertex v.
H Incidence matrix of the hypergraph H.
k(v) Degree of a vertex v.
d(e) Degree or cardinality of a hyperedge e.
w(e) Weight of a hyperedge e.
W Diagonal matrix of hyperedge weights.
D, Diagonal matrix of node degrees.
D. Diagonal matrix of hyperedge cardinalities.
H* Dual hypergraph H* of H, constructed by swapping the
role of nodes and hyperedges.
k-uniform Hypergraph in which each hyperedge has cardinality k.
Representation L Hypergraph Laplacian.
learning X Nodes’ feature matrix.
o Non-linear activation function.
0, Learnable neural network parameters.

The degree of a vertex v and the degree of a hyperedge ¢ are defined as

deg(v) = ZH(U, ¢) and &(e) = Z H(v,e),

ee& veV

respectively. D, € RIVXIVI and D, € RI!€XI€l indicate their corresponding diagonal matrix.
When all hyperedges have the same degree k, i.e., §(e) = k Ve € &, we say that H is a k-uniform
hypergraph. k-uniform hypergraphs also have a tensor representation [89, 180]. As for classical
networks, both nodes and hyperedges may be of more than one type; in such cases, the hypergraph
is heterogeneous.

The dual H* of a hypergraph H is the hypergraph constructed by swapping the roles of nodes
and hyperedges, i.e, H* = (V*,&"), where V* ={i|e; e E}and E = {{i|vee; € &) |ve V).

In a weighted hypergraph, denoted by a tuple H = (V,&, W), each hyperedge e € & has a
weight w(e), representing the importance of that relation in the whole hypergraph. W € RI€XI€l
denotes the diagonal matrix of the hyperedge weights, i.e., diag(W) = [w(e;), w(ez), ..., w(e|g))].

In a weighted hypergraph, the degree of a vertex v is defined as deg(v) = Y .cg w(e)H(v,€). A
non-weighted hypergraph can be seen as a special case of the weighted one where W = I,,.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:6 A. Antelmi et al.

\ 6/4.
< = A
Ug .7 . »
(a) Hypergraph. (b) Two-section Graph (c) Incidence graph (d) Line graph.
(a.k.a clique graph). (a.k.a. star expansion).

3

Fig. 3. Hypergraph-to-graph transformations.

3.2 Hypergraph-to-graph Transformations

Hypergraphs have usually been converted into a corresponding graph representation in the liter-
ature. Even though such transformation has often been preferred over hypergraphs, especially for
computation convenience and the easiness of dealing with graphs rather than higher-order struc-
tures, this process may either bring a loss of information or introduce redundant vertices/edges
regarding the original hypernetwork structure. The typical transformation of a hypergraph into a
graph relies on its two-section, incidence, or line graph representation [24]. Figure 3 shows a toy
hypergraph and its corresponding two-section, incidence, and line graphs.

Two-section graph. The two-section or clique graph of H is the graph, denoted with [H],, whose
vertices are the vertices of H and where two distinct vertices form an edge if and only if they are
in the same hyperedge of H (see Figure 3(b)). In other words, each hyperedge of H appears as a
complete sub-graph in [H];.

The major drawback of using such a transformation is that clique graphs completely lose the
notion of groups since pairwise connections substitute each high-order interaction. Consequently,
we have a high probability of materializing interactions that did not exist in the original hyper-
graph. This intuitive concept of losing the notion of groups is formalized by the fact that different
hypergraphs can be transformed in the same clique graph; hence, we cannot uniquely reconstruct
the original hypergraph from its clique graph. Further, clique graphs can yield computational is-

kx(k—1)

sues as each hyperedge of size k is transformed into —5— edges.

Incidence graph. The incidence graph or star expansion of H is the bipartite graph I(H) =
(V,8,8"), where v € V and e € & are adjacent if and only if v € ¢, i.e., & = {(v,e) | v € e} (see
Figure 3(c)).

Bipartite graph representations effectively describe group interactions (see Figure 3(c)). In this
model, one vertex set corresponds to the hypergraph’s vertices, the other to the hyperedges. Hence,
alink in this graph connects a vertex to the interactions—of arbitrary order—in which it takes part.
However, bipartite graphs also have a critical shortcoming inherent in their structure. Vertices in
the original system do not interact directly anymore as the interaction layer always mediates their
relationship. This interaction structure implies that any measure or dynamic process defined on
the bipartite representation must consider this additional complexity.

Line graph. The line graph of H is the graph L(H) = (V’,&’) such that V' = &, and {i,} €
E'i#j & e;Ne; # 0 (see Figure 3(d)). Essentially, each hyperedge is transformed into a node
and an edge is added between two nodes if the corresponding hyperedges intersect in the original
hypergraph.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:7

As happens for clique graphs, distinct hypergraphs can have identical line graphs as they lose
the information about the composition of each hyperedge, storing only whether two hyperedges
intersect but not in which manner. Further, sparse hypergraphs can yield relatively dense line
graphs as a vertex of degree d in the hypergraph yields (g) edges in its line graph.

4 THE HYPERGRAPH REPRESENTATION LEARNING PROBLEM

This section formally introduces the hypergraph representation learning problem to then detail
the problem setting in terms of input and output. Finally, it discusses the intrinsic challenges of
learning latent representations of a hypergraph.

4.1 Problem Formulation

Definition 4.1[Hypergraph Embedding] For a given hypergraph H = (V, &), where V is the set
of nodes and & is the set of hyperedges, a hypergraph embedding is a mapping function ® : V —
RV where d < |V|, such that ® defines the latent representation (a.k.a. embedding) of each
node v € V, which captures certain network topological information in &.

In other words, given a hypergraph H = (V, &) and a predefined embedding dimension d, with
d < |V], the problem of hypergraph representation learning (a.k.a. hypergraph embedding) is to
map H into a d-dimensional vector space (a.k.a. latent space), in which the structural properties of
H are preserved as much as possible. When features are attached to nodes/hyperedges, the learned
latent representation should also encode such additional information. Following this definition,
each hypergraph is represented as either a d-dimensional vector (for a whole hypergraph) or a set
of d-dimensional vectors, with each vector representing the embedding of part of the hypergraph
such as nodes, hyperedges, or substructures.

4.2 Problem Setting

In this section, we compare existing hypergraph representation learning literature from the per-
spective of the problem setting, describing different types of input/output and the specific charac-
teristics of each setting.

4.2.1 Input Setting. In this survey, we analyze the hypergraph embedding input along six axes:
the nature of the high-order relation, its directionality and size, the temporal dimension, whether
nodes have attached additional information, and whether the hypergraph is converted into a
graph. Figure 3 in the Supplemental Material shows the different types of hypergraphs, while
Figure 4 outlines the input settings. Next, we introduce each category and summarize its specific
characteristics.

Nature of the relation. As happens for graphs, hypergraphs can encode relations among nodes
of one or more types. Similarly, hyperedges may represent a single or different kinds of possible
interactions.

Homogeneous hypergraphs. Homogeneous hypergraphs represent the most trivial input setting,
as both nodes and hyperedges belong to a single type. In this context, each hyperedge tells
us that a given subset of nodes shares a common property or feature. Homogeneous hy-
pergraphs have been widely used to model the most various user-item relations for rec-
ommendation purposes (e.g., [33, 84, 166, 181, 185]), citation networks for the link predic-
tion task (e.g., [10, 48, 49, 86, 171]), and other relational data for classification problems
(e.g., [88, 120, 131, 169, 194]). In the literature, it is also possible to find homogeneous hy-
pergraphs built upon non-relational data [54], where, for instance, hyperedges represent
vertex connections based on some notion of distance in the feature space. In these cases,

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:8 A. Antelmi et al.

such structures are usually abstract, possibly multimodal features for object classification
(e.g., [48, 103, 117, 160, 177]), traffic or passenger flow forecast [105, 154, 155], and gas or
taxi demand [177].

Homogeneous hypergraphs are often employed in their weighted version to convey infor-
mation about the importance of a relation through hyperedge weights (e.g., [48, 80, 103, 121,
134]). The intuition behind this choice is that the weights should drive the algorithm to be
more accurate in learning the embedding of nodes within more important hyperedges.

The biggest challenge of learning a vector representation of a homogeneous hypergraph is
to preserve its connectivity patterns in the latent space as only structural information is
available. Typically, embedding methods defined over such structures are more general and
can be re-used off the shelf without any particular tweak as the task they are defined for has
no particular constraint.

Heterogeneous hypergraphs. Hypergraphs capture the heterogeneity of the underlying hyper-
network via nodes of different types or through nodes and hyperedges of multiple kinds.
In the first case, all hyperedges semantically encode the same type of interaction among
diverse entities. Most of the heterogeneous hypergraphs belong to this category, and they
are usually employed to model relations among users, items, and domain-specific proper-
ties or actions for ranking/recommendation (e.g., [18, 33, 152, 179, 181]), link prediction
(e.g., [147, 172, 175, 176, 191]), or classification tasks (e.g., [36, 147, 198]). Hypergraphs with
heterogeneous nodes and hyperedges add further expressiveness as relations can be of more
than one type. In such cases, hyperedges can represent different types of events [37, 61, 62];
documents, tags, and annotation relations [197]; users, songs, and tags interactions [91];
actions on social media [138]; or even components in chemical/mechanical processes [164].

There are two major challenges when dealing with the embedding of heterogeneous hyper-
graphs. The first challenge relates to how to effectively encode different types of nodes and
relations to preserve structural and semantic properties. The second problem refers to a pos-
sible imbalance of objects of different types. Further, the more complex the heterogeneous
hypergraph is, the more specific the representation learning method will be. This situation
often leads to embedding algorithms that are strictly related to the application task and are
tricky to generalize.

Directionality of the relation. This feature refers to whether a direct interaction exists between
(groups of) nodes in the underlying hypernetwork. Hence, we can find both undirected and di-
rected hypergraphs in the literature.

Undirected hypergraphs. By far, undirected hypergraphs represent the typical input setting in
the task of hypergraph representation learning. In this case, dependencies between nodes or
hyperedges are not considered.

Directed hypergraphs. Conversely to graphs, there is not a standard definition of directed hy-
pergraphs, and the notion of direction may be applied either between hyperedges (i.e., set
of nodes) [51] or between nodes within the same hyperedge [8]. Yadati et al. [172] and Gao
et al. [53] follow the first interpretation, proposing an embedding algorithm working on di-
rected hypergraphs based on the definition of Gallo et al. [51]. In this case, the head and
the tail of the directed relation are embodied by two hyperedges. Luo et al. [105] and La
Gatta et al. [91] exploit the second interpretation, grounding their embedding technique
on the definition proposed by Ausiello et al. [8]. This time the directionality of the interac-
tion is defined within a single hyperedge, which consists of two node sets (head and tail).

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:9

Liao et al. [97] propose a generalized definition of this concept, in which each directed hy-
peredge comprises a sequence of node sets.

Regardless of the definition of directionality used, the most critical challenge of learning a
latent representation of a directed hypergraph is how to incorporate hierarchy and reacha-
bility to preserve the asymmetric transitivity in the embedding space [19, 118].

Size of the relation. This property refers to the cardinality of each hyperedge and is strictly
related to the nature of the relations the hypergraph is modeling. Hyperedges can represent inter-
actions between either a fixed or unbounded number of nodes.

k-uniform. In k-uniform hypergraphs, each hyperedge has cardinality k and usually models an
existing interaction between k nodes of possible k different types. Put differently, each hy-
peredge represents an indecomposable relation between heterogeneous entities that cease to
exist when one or more components disappear. In this case, hyperedges represent relations
between user mobility data and friendships (linking social, semantic, temporal, and spatial
information) [146, 175, 176] or interactions between users, items, and domain-specific prop-
erties, e.g., [33, 78, 89, 147, 151]. Sometimes, a single hypergraph encodes k-way relationships
of different sizes and/or types, e.g., [146, 175, 176, 181, 197].

k-uniform hypergraphs introduce more constraints regarding how the domain of interest
should be modeled, but, at the same time, they ease the definition of hyperedge-related tasks,
such as link prediction (see Section 4.3).

Non-uniform. In non-uniform hypergraphs, each hyperedge encodes a relation among an arbi-
trary number of homogeneous or heterogeneous nodes. In contrast with k-uniform hyper-
graphs, a hyperedge can continue to exist even when one or more nodes are removed from
the network.

Heterogeneous and non-uniform hypergraphs have been used to model event data [37, 61,
62] or, as in the previous case, interactions between users, items, and domain-specific prop-
erties (e.g., [18, 45, 138, 152, 191]). Homogeneous and non-uniform hypergraphs have been
exploited to represent similarities or shared properties of relational and non-relational data
(e.g., [103, 124, 131, 194]), citation networks (e.g., 10, 48, 74, 159, 185]), and several user-item
relations (e.g., [33, 84, 95, 181, 185]).

Thanks to their flexibility, non-uniform hypergraphs represent the most common input set-
ting; however, conversely to k-uniform hypergraphs, they introduce further complexity to
hyperedge-related tasks (see Section 4.3).

Temporal dimension. With their structure, hypergraphs can capture either a static view or the
dynamicity of the underlying hypernetwork.

Static. Static hypergraphs represent the most common input setting given the early age of this
research field. Static hypergraphs can model either existing connections at a fixed moment
(e.g., [146, 147, 175, 176]) or node interactions over time that are aggregated into a single
static snapshot (e.g., [33, 62, 78, 171, 179]).

Dynamic. Real (hyper)networks are often characterized by a dynamic behavior, meaning that
both nodes and (hyper)edges can be added or removed from the system or that labels and
other properties can change over time [16]. In the literature, a dynamic hypergraph is usu-
ally represented by a sequence of static hypergraphs, i.e., H = (H(l), ..., H(t7-1)), where
H(ty) = (V(tx), E(tr)) is a static hypergraph with timestamp t, with k € {0,...,T -1}, T is

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:10 A. Antelmi et al.

the number of snapshots, V (t) is the node set at timestamp t, and E(tx) is the hyperedge
set including all edges within the period [#x, tx+1) [95, 152].

Temporal hypergraphs have been used to model users’ preferences over time in recommen-
dation tasks [70, 87, 95, 152], in user trust relationships for rumor detection [140], or for time
series forecasting [134, 154, 155, 164, 177].

Developing an approach to embedding dynamic hypergraphs implies dealing with a series
of challenges that arise when the temporal component comes into play [16]. Such methods
should consider (1) how to model the time domain (discrete-time or continuous-time), (2)
which dynamic behaviors have to be embedded, and (3) which temporal granularity will be
represented in the vector space.

Node features. This category refers to whether additional semantic information is associated
with the nodes as input to the embedding process.

Not attributed. In this setting, nodes convey only structural information through their connec-
tivity patterns.

Attributed. Besides the structural patterns, nodes can carry additional information about their
nature in the form of feature vectors. These vectors may encode information related to user
(e.g., [72, 87]) or item features (e.g., [41, 70, 166]), pre-trained word embeddings [40], image
spectral features (e.g., [103, 117, 141]), and values derived from sensors (e.g., [105, 154, 155]),
to name a few examples.

Although the presence of extra attributes can boost the performance of the intended task [52],
this auxiliary information may not be trivial to embed, especially if it is not in a vector form.

Transformation to graphs. In the literature, the most common approach to deal with the high-
order nature of hypergraphs is to split the single relation encoded by a hyperedge into a set of
pairwise interactions. As described in Section 3.2, hypergraphs can be transformed into either
clique graphs, incidence graphs, or some intermediate representation. Considerations about the
drawback of each transformation can be found in Section 3.2.

Clique graphs. Transforming a hypergraph into the corresponding clique graph means instanti-
ating a direct interaction between each pair of nodes in a given hyperedge. Such connections
can be materialized, for instance, when the hypergraph adjacency matrix is exploited to con-
sider linking patterns (e.g., [23, 128, 131]), or used to compute the pairwise similarity of two
embedding vectors of nodes within the same hyperedge (e.g., [37, 62, 146, 176]). The clique
graph transformation is implicitly used by most of the hypergraph convolutional methods
based on the Message Passing Framework as thoroughly described in Section 5.3.

Incidence graphs. In an incidence graph, hyperedges are represented as nodes, and the high-
order relation of the nodes in a hyperedge is mediated by these special nodes via pairwise
links.

From a computational perspective, incidence graphs let the information flow from nodes
to hyperedges and back. For this reason, this graph transformation is implicitly used by the
Message Passing techniques based on the two-stage update procedure (e.g., [7, 79, 136, 145]),2
in which, in a single convolutional layer, the messages pass from nodes to the hyperedges,
where they are aggregated, and then back from the hyperedges to the nodes (see Section 5.3).

2Hyper-SAGE [7] does not appear in our statistics because it is not peer-reviewed.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:11

Line graphs. Line graphs capture the relationship between the edges of a hypergraph. This
representation has been used to preserve the indecomposability of the high-order relations
encoded by hyperedges in Bandyopadhyay et al. [15], which designed a hypergraph convolu-
tional network relying on an implicit transformation to weighted line graphs. Xia et al. [166]
also introduce a hypergraph transformation to a line graph to alleviate the sparsity problem
in recommendation tasks. In LE [174], the line graph transformation is applied to leverage
standard graph convolutional networks.

Other transformations. Other approaches convert the hypergraph into a modified form of the
transformations described in Section 3.2 to better capture structural properties and use them
as an implicit regularizer [171], alleviate the sensitivity toward the node distribution [123],
or model domain-specific characteristics [33]. For instance, Pu and Faltings [123] construct a
directed weighted line graph in which each hyperedge is replaced with two nodes (positive
and negative), and an edge is added between positive and negative node pairs based on the
same ratio of line graphs. Yadati et al. [171] propose a modified version of the classical star
expansion. Also in this case, each hyperedge is replaced by two nodes, joined by an edge, and
linked to all nodes originally contained in the corresponding hyperedge. A third example can
be found in Chen et al. [33], where the authors define a revised version of the clique graph
converting each hyperedge (of a 3-uniform hypergraph) into two pairwise interactions.

4.2.2 Output Setting. The output of hypergraph embedding techniques® is a (set of) low-
dimensional vector(s) representing (part of) a hypergraph. The embedding output is strictly
task-driven, and finding the most suitable embedding type is crucial to meeting the specific
application’s needs.

In this survey, we consider node and hyperedge as embedding output settings. The most common
embedding output is node embedding, while only a few approaches propose hyperedge embedding.
Currently, no method deals with whole-hypergraph or hypergraph substructure embedding (see
Section 7 for more details).

It is worth clarifying that there is no one-to-one correspondence between the specific embedding
output setting and the addressed task since node (resp. hyperedge) embeddings can be used to
evaluate hyperedge (resp. node)-related tasks.

Node embedding. Node embedding represents each node as a vector in a low-dimensional space.
The underlying idea is to learn similar latent representations for nodes that are close in the original
hypergraph. In practice, this concept of closeness often refers to nodes included in the same hyper-
edge. When nodes have additional features attached, both structural and semantic closeness are
considered in the embedding process. As the most common embedding output setting, node em-
beddings have been used in a variety of downstream hypergraph analytic tasks, such as clustering
(e.g., [37, 131, 194]), classification (e.g., [120, 138, 169]), regression (e.g., [134, 154, 177]), link pre-
diction (e.g., [45, 74, 191]), and recommendation (e.g., [152, 153, 185]). The complexity of defining
a proper similarity metric heavily depends upon the properties of the input hypergraph.

Hyperedge embedding. Hyperedge embedding methods learn low-dimensional vector represen-
tations for the hyperedges. In contrast to graphs where each edge encodes a pairwise relationship,
in this context, the hyperedge embedding vector needs to capture the interaction between an ar-
bitrary number of nodes.

The most common approach is combining the embedding vectors of the nodes within
the specific hyperedge, for instance, by summing [23], averaging [62], performing more

3We are considering the embedding outputs and not the output related to the specific task (e.g., classification, regression).

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:12 A. Antelmi et al.

complex aggregations [37], or learning the aggregation function through a (deep) neural net-
work [40, 43, 45, 53, 60, 63, 79, 120, 136, 145]. Other approaches consist in translating the problem
of hyperedge embedding in the node domain by operating (1) on the dual hypergraph (so that the
nodes of the new hypergraph represent the hyperedges of the original one) [74, 88] or (2) on the
corresponding bipartite graph (in which each hyperedge is modeled as an additional node) [143].

In this survey, we consider falling under this category only those techniques that explicitly learn
hypergraph embeddings. As expected, hyperedge embedding benefits edge-related tasks, such as
link prediction [45, 74, 143] or link classification [120, 136]. Nonetheless, hyperedge embedding
vectors are also exploited to capture contextual information to improve node-related tasks, like
clustering [37], classification [37, 43, 62, 74, 140], and recommendation [145].

4.3 Challenges of Hypergraph Representation Learning

Obtaining an accurate representation of a hypergraph into low-dimensional spaces is not a triv-
ial task [26, 31, 184]. As hypergraphs are a generalization of graphs, the following challenges are
directly inherited by the graph representation learning problem. The first challenge lies in find-
ing the optimal embedding dimension of the representation. Using a lower dimension is more
resource-efficient and may also help reduce noise in the original network; on the other hand, criti-
cal information may be lost in the process. Conversely, a higher-dimension representation tends to
preserve more information at the expense of storage requirement and computation time. Further,
the proper dimension depends on the input hypergraph as well as the application domain. The
second issue relates to choosing the right hypergraph property to embed, as it can be reflected by
node features, link structures, or meta-data information. Again, determining which feature is the
most suitable for the task is strictly domain-dependent. Such obstacles relate to preserving both the
structure and the rich content that may be attached to the network elements [31, 184]. A third chal-
lenge resides in the data’s nature: due to countless reasons—such as privacy or legal restrictions,
among others—the problem of data sparsity may corrupt both the structure and the additional con-
tent of a network. This condition may thus lead to extra difficulties in discovering structural-level
relatedness and semantic similarities between vertices not directly connected [184]. In the case
of heterogeneous networks, the hypergraph representation learning task is even harder [42, 158].
In addition to the previous challenges, the core issue in this context is effectively fusing heteroge-
neous information to encode different types of entities and relations into latent spaces so that both
structural and semantic properties are preserved. Capturing the inherent organization of such net-
works may require prior knowledge of the application domain to be included in the embedding
process (for instance, in the design of meta-paths [60, 78]). This consideration leads to embedding
techniques that are strictly application dependent and difficult to generalize and reuse in other
contexts [158]. Nonetheless, embedding hypergraphs enforces to tackle two more issues deriving
from the higher-order nature of these structures.

o Capturing group relations. Hypergraphs model many-to-many relationships among entities.
Nonetheless, the existence of a hyperedge bonding of some nodes only tells us that they
share a common property and does not necessarily imply direct interactions between them.
For instance, a hypergraph can encode a character co-occurrence (hyper)network, in which
each node is a movie character and each hyperedge is a movie scene (hence, all characters
appearing in the same scene also occur in the same hyperedge) [4]. The fact that two
characters belong to the same hyperedge only tells us they have appeared in the same
scene, but not that they have interacted in some way. We can argue a similar observation
for a heterogeneous and k-uniform hypergraph. Let us consider a hypergraph modeling a
Location-based Social Network (LBSN) in which each hyperedge links a user’s presence at

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:13

a point of interest (POI) at a specific time along with the semantic information about the
user’s activity there [146, 175] (i.e., each hyperedge is a four-element set). In this case, each
hyperedge represents an indecomposable relation between four types of entities, which all
relate to the same real-world event. Removing a single of these entities would cause the
hyperedge to disappear. A critical challenge of hypergraph representation learning lies in
capturing such high-order relations in the embedding process. Mathematical tools able to
abstract such relationships are fundamental in achieving this goal.

o Task definition. The key feature of hypergraphs is that each hyperedge embodies a relation
that can potentially connect more than two nodes. This structural characteristic implies
that all tasks defined over relations (i.e., formalized on the edges of a graph)—such as link
prediction or network reconstruction—need to be generalized.

The critical issue is that the definition of such tasks needs to be adapted to the specific
application context. For instance, let us focus on the link prediction problem. Even for
newbies, it is straightforward to think what is the goal of this task when instantiated on a
graph, namely predicting whether a given relation between two nodes (will) exists. When
dealing with hypergraphs, this problem takes on different meanings based on the nature of
the underlying hypernetwork. Heterogeneous and k-uniform hypergraphs usually model
fixed-sized relations among a specific group of entities with different types. In this case,
we are interested in finding whether a relation (a subset of nodes) linking a fixed number
of different elements exists (e.g., [78, 147, 176]). In the case of non-uniform hypergraphs,
the problem becomes harder: this time, there is no (a priori) constraint on the size of the
hyperedge to predict (e.g., [45, 79, 169]). As a consequence, the computational complexity of
the link prediction problem explodes as the number of different hyperedges is exponential
(as it corresponds to the number of all possible subsets of a set).

Another direct consequence deriving from the structural nature of hypergraphs is that these
structures can be exploited to also study problems on sets (a hyperedge being a subset of
nodes). For this reason, tasks borrowed from set theory can be easily adapted in this context.
A good example is the task of hyperedge completion [136], deriving from the set expansion
task [183]. This problem involves finding those nodes that may fit into an existing hyperedge,
thus completing it. Clearly, there is no direct equivalence of this problem for graphs.

5 HYPERGRAPH REPRESENTATION LEARNING METHODS

Hypergraph representation learning aims to embed hypergraphs into a low-dimensional space
while preserving the original hypernetwork properties as much as possible. We divide hyper-
graph embedding techniques into three macro categories: spectral learning methods, proximity-
preserving methods, and (deep) neural-network-based methods. The main difference between
these three families lies in the way the representation learning problem is approached.

o The spectral learning family is the pioneer in hypergraph representation learning. Although
the very first works (e.g., [23, 128]) were not focused on the learning aspects, the basic con-
cepts and ideas apply in most of the later works (e.g., [194]). Basically, spectral learning
approaches define the hypergraph representation learning problem in terms of the decom-
position of the Laplacian matrix (hence, the term “spectral”) of the hypergraph (Section 5.1).
The output of such decomposition (a.k.a. factorization) is the (vertex) embedding matrix,
where the topological proximity of the embedding vectors is ensured by the nature of the
factorization.

e Proximity-preserving methods rely on a more flexible approach to the problem: vertex
proximity in the embedding space is measured in terms of a similarity function (e.g., cosine

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:14 A. Antelmi et al.

similarity), and such embeddings are learned by optimizing an objective function defined
to preserve the topological proximity (i.e., close vertices should be similar) along with other
factors and constraints related to the given task. The flexibility of this family of techniques
lies in the modularity of the overall approach (i.e., similarity function — objective function
— optimization) that makes it easily adaptable to very specific tasks and/or input settings.

e (Deep) Neural-network-based hypergraph embedding, as the name suggests, is a family
of techniques based on (deep) neural networks. As it will be clear later, nowadays, deep-
learning-based approaches are predominant w.r.t. the other families of hypergraph learning
techniques. This success is due to the well-known strengths of Deep Neural Networks
(DNN), like automatic feature learning, scalability, and generalization, to name a few. Akin
to DNN for graphs, a significant role is played by hypergraph convolutions that allow
the generalization of well-established neural models to work on arbitrarily structured
hypergraphs. Arguably, (many) proximity-preserving methods can be implemented in
terms of shallow neural networks; however, in this survey, we stick to the methodology
described in the original papers, and thus we consider proximity-preserving methods not
based on neural networks.

In the following, we describe each approach proposed in our taxonomy, discussing its motiva-
tion, the most representative methods following the given technique, and its pros and cons. Finally,
we summarize and compare the hypergraph representation learning approaches. Figure 5 in the on-
line Supplemental Material outlines this taxonomy. Application tasks using the methods covered
in this section are discussed in Section 6.

Please refer to Appendix C.3 in the Supplemental Material for a discussion about the temporal
distribution of the papers covered in this survey.

5.1 Spectral Representation Learning Methods

Motivation. Spectral hypergraph embedding (a.k.a. spectral representation learning) methods are
historically the first representation learning methods for hypergraphs. Interestingly, as far as we
know, the very first discussion about vector representation learning for nodes/hyperedges dates
back to the 1980s [50], where the goal was to learn a 2D representation suitable for visualization.
Despite the approach to the problem being somewhat unorthodox w.r.t. today’s standards, the work
in [50] captures the essence of spectral representation learning. Generally speaking, this methodol-
ogy aims to learn a low-dimensional latent representation for vertices in such a way that “similar”
vertices are close to each other in the learned (Euclidean) latent space. Although, in principle, ver-
tices” similarity could be modeled in several ways, the vast majority of the spectral hypergraph
embedding methods define it in terms of the number of common incident hyperedges. The name
“spectral” stems from the usage of concepts related to spectral (hyper)graph theory [28, 38], specif-
ically, the relationships between the eigenvectors and eigenvalues of the (hyper) graph Laplacian
matrix. As we will see, the common denominator of this family of methods is the definition of the
node embeddings’ features as the eigenvectors corresponding to the minimal eigenvalues of the
Laplacian matrix.

Methods. Before diving into the characteristics of each spectral embedding technique, we provide
a general overview of the methodology.

5.1.1 Overview. Let H(V,&, W) be a weighted hypergraph, and let X € R™ be the matrix
where each row x; € R?, with i € [n], is the latent representation of the vertex v; € V that we
aim to learn. Ideally, the learned vertices’ representation should encode the structural information
of the hypergraph; thus, similar vertices should be mapped onto nearby points in the latent space.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:15

If we only consider information about the hypergraph structure, the similarity between two nodes
v;, vj € V can be expressed as the (normalized) sum of the weights of the common incident hyper-
edges. Given this notion of similarity, we can define an optimization problem whose objective is to
minimize the weighted Euclidean distance between nodes sharing the same hyperedges. Formally:

2
argmm - Z Z ZHU‘ €ellv; €]]5((:))

v,E(V v;eV e€&

X Xj

V(o) Vx(@)

subject to XTX = I to avoid trivial solutions or arbitrary scaling factors, and where #(-) is the
trace operator, i.e., tr(A) = Y; A(i,i). According to Zhou et al. [194], Eqatuion (1) is the relaxed
version of the (NP-complete) problem of finding the optimal normalized cut, whose minimum
is obtained by setting as columns of X (i.e., the features in the latent space) the d orthonormal
eigenvectors corresponding to the d smallest nonzero eigenvalues of the Laplacian Lzpy.

_1 _1
=t(X (I, —D,’HWD,'H'D_?)X") (1)

Lzhou

5.1.2 Structural-only Spectral Embedding. The hypergraph Laplacian plays a key role in the
definition of the loss function because it encodes the concept of “closeness” between nodes in the
hypergraph. As a consequence, different Laplacians lead to different embeddings. In fact, the main
difference between the methods discussed in this section lies in how the hypergraph Laplacians
are defined. To ease the exposition of the hypergraph spectral embedding methods, we define a
unified framework for learning the optimal d-dimensional embedding X. The framework is based
on the seminal works of Bolla [23] and Zhou et al. [194], but it provides a factorized view of
the hypergraph Laplacian, allowing instantiating the different techniques by setting those factors.
Formally, the framework is defined as

argmin tr(X' Z (D, —Sy) Z" X) = tr(X"LX),)
L

X:XTX=I, v

where L € R!VXIVI is the hypergraph Laplacian, Z € RVl is a normalization matrix, and
S, € RIVXIVI can be interpreted as a similarity matrix between nodes. When not specified
differently, we assume S, = HS.H', where S, € RIEXIEl s a function of the weight and/or
cardinality of the hyperedges. So, the factor (D, —S,) represents a generalization of the not
normalized graph Laplacian (i.e., the graph Laplacian can be obtained with S, = HHT). The
matrix Z acts as a Laplacian normalizer, and when it is not the identity (i.e., no normalization), it is
equal to D,'/%. Normalized Laplacians are often preferred because the influence of hub nodes (i.e.,
nodes within many hyperedges) is reduced, and their definition is tied to the probability transition
matrix.

By definition, L is positive semi-definite, and, as previously described, we know that the solution
to Equation (2) can be computed using the eigendecomposition of L from standard results in linear
algebra [20].

Equation (2) was first introduced by Bolla in [23], where it is instantiated to find the “minimal
variance placement” of the vertices in the latent space, leading to a formulation with an unnor-
malized Laplacian, ie,, Z = I|¢| and S, = D;l. Bolla also showed that, given the optimal X", the
optimal hyperedge embeddings can be computed as X*HD; .

Zhou et al. [194] made a step forward by providing a general framework for spectral hyper-
graph partitioning. The proposed normalized hypergraph Laplacian (i.e., Lznou) generalizes [23]
by including hyperedge weights, i.e., S = WD_!, as well as node normalization, i.e., Z = D,
Closely related to Zhou’s Laplacian are the ones proposed by Zhu et al. [197] (HHE [197]) and
Pu and Faltings [123]. In HHE [197], the Laplacian corresponds to Zhou’s Laplacian without the
node normalization (Z = Ij|), while in Pu and Faltings, the hyperedge degree matrix is omitted
in S.. Pu and Faltings also present a novel Laplacian matrix (that does not fit the framework in

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:16 A. Antelmi et al.

Equation (2)) based on the hyperedge expansion so that the learning result is invariant to the distri-
bution of vertices among hyperedges. This novel formulation seems to get clusters of nodes with
larger margins, which could be beneficial in the case of clustering tasks.

In [124], Ren et al. state that Zhou’s Laplacian is not ideal for vision problems. Specifically, they
argue that S, contains redundant information while the normalization is empirically ineffective.
For this reason, they proposed a Laplacian analogous to the standard graph Laplacian, i.e., S, =
sligand Z = V2I,). Saito et al. [131] proposed a Laplacian strongly related to Zhou’s where the
node similarity matrix has the diagonal zeroed out, i.e., S, < S, — diag(S,). From a random walk
standpoint, Saito’s Laplacian is consistent with standard graph Laplacians, whereas Zhou’s setting
can be regarded as a lazy random walk with self-loops.

The direct connection with graphs is also present in Rodriguez [128], where the hypergraph
Laplacian of H(V, &) corresponds to the Laplacian matrix of the weighted graph on V, in which
two vertices v, u are adjacent if they are adjacent in H, and the edge-weight is the number of
edges in H containing both u and v, i.e., |&, N &, |. According to Rodriguez, this Laplacian has nice
spectral properties; however, the impact in terms of node embeddings is unclear.

5.1.3 Spectral Embedding for Nodes with Additional Features. Despite its generality, Equation (2)
assumes that nodes only carry structural information. However, there are many applications in
which additional features can be attached to nodes. We can generalize the framework to include
such cases and consider an initial node representation. Let V € R™/ be the matrix containing each
node (on the rows) and its features (on the columns); then, we can rewrite Equation (2) as

argmin t(X"V'Z (D, —S,) Z"VX) = t(X"V'LVX), (3)
X:XTVTVX=I,

where X € Rf*? is the projection matrix that we want to learn. So, differently from Equation (2),
here we learn a linear transformation rather than the embedding that is obtained as VX € R™¢,
It is worth noticing that Equation (3) generalizes Equation (2) and they are equivalent if V is the
identity matrix with f = n.

Both the approaches proposed by Sun et al. in [141] and [137] fall under Equation (3), while
the approaches presented by Luo et al. in [103] and [104] are closely related to Equation (3) but
the optimized loss is different. Specifically, Lou et al. use Zhou’s Laplacian, but embeddings are
learned in a supervised fashion where the supervision is used to define an objective function that
simultaneously ensures high intra-class compactness and high inter-class separability. Very similar
approaches to Luo’s are proposed by Yuan and Tang [182] and Huang et al. [80].

Remarks. As demonstrated by Agarwal et al. [1], all hypergraph Laplacians introduced in this
survey do not consider the higher-order nature of the interactions encoded by hypergraphs as, in
practice, those are manipulated as graphs. Precisely, with the appropriate weighting function, the
Laplacians in [194, 197] correspond to the Laplacian of the hypergraph star expansion, while the
Laplacians in [23, 128, 131] are equivalent to the Laplacian of the hypergraph clique expansion.
Agarwal et al. further showed that, in a linear setting, these two transformations are equivalent.
These embedding methods benefit from spectral theory on hypergraphs, making their definition
elegant and easy to implement since they are based on standard linear algebra operations. How-
ever, the overall spectral framework is not flexible enough to easily handle the injection of node
and hyperedge heterogeneity, and it is not designed to deal with temporal dependencies. Such
settings can be tackled in a naive way by constructing different hypergraph Laplacians based on
the node/hyperedge types [197] or by building discrete hypergraph snapshots and learning node
embeddings by solving the generalized eigenproblem (as for dynamic graphs [168]), respectively.
Further, as in the case of graphs, spectral theory on hypergraphs does not straightforwardly

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:17

translate to directed hypergraphs (whichever their definition is, see Section 4.2.1), and solutions
to make the adjacency matrix symmetrical would add further (computational) complexity to an
already demanding problem [193]. In addition, spectral methods scale poorly with |V| as they
require the in-memory storage of all the matrices involved in Equation (1), even though sparse
representations (of sparse hypergraphs) may help alleviate this problem. Still, this requirement
hugely hinders their applicability to very large hypergraphs. This scaling issue explains why
most spectral embedding methods were proposed in early 2000, while nowadays, more scalable
approaches are preferred, e.g., neural-network-based methods.

Table 1 in the online Supplemental Material (Appendix D) provides an overview of the spectral
methods described in this section. We provide the implementation of most of these methods at
https://github.com/alessant/HEE.

5.2 Proximity-preserving Methods

Motivation. Proximity-preserving (PP) algorithms aim to design a proper similarity function able
to catch various structural and semantic information conveyed by the hypergraph. The similarity
can be naturally computed in graphs based on first-order or second-order proximity information.
While the former tells how similar two nodes are based on the weight of the link between them,
the latter compares the similarity of the nodes’ neighborhood structures [26]. When it comes to
hypergraphs, a desirable property of the embedding is to simultaneously retain the proximity
among the nodes in the same group, as a hyperedge encodes high-order relationships that are not
necessarily meaningful when fractured into pairwise links [179].

Methods. Proximity-preserving and spectral embedding algorithms share the idea of retaining the
nodes’ topological closeness; however, the approach to the problem is very different. PP techniques
are less theoretically grounded, but the methodology is much more flexible and easy to adapt to
the specific task at hand.

Although it is impossible to provide a single sensible framework general enough to cover all the
methods falling into this category, we can highlight the concepts and ideas shared among most, if
not all, of them.

Similarity as a function of the dot-product. In the case of Euclidean latent spaces, the prox-
imity/closeness of two vectors is commonly measured using the dot-product [26]. Based
on this general idea, PP methods designed for hypergraphs generally aim to jointly opti-
mize the tuple-wise (or n-wise) proximity of the nodes in a hyperedge via the dot-product
(HEBE(-PO/PE) [61, 62], FOBE and HOBE [144])) or one of its variants, like the cosine similar-
ity (Lbsn2Vec [175], Lbsn2Vec++ [176], and MSC-LBSN [146]).

Negative sampling. Regardless of the specific proximity function used, optimizing the similarity
of related nodes comes with the risk of overfitting. In order to avoid overfitting, PP methods
need (at least) to consider negative hyperedges (i.e., hyperedges in 2f \ &) by maximizing
the distance of the incident nodes. Given the combinatorial explosion of the number of non-
existing hyperedges, negative sampling represents the most common technique to solve this
problem (Lbsn2Vec (++) [175], HGE [179], HEBE (-PE/PO) [61, 62], FOBE, and HOBE [144]).

Objective function. The objective function presents a similar structure across all PP methods.
Specifically, we can identify three primary sub-objectives:
(1) maximization of the node embeddings’ similarity for nodes that are topologically or se-
mantically close to each other;
(2) minimization of the node embeddings’ similarity for the negative samples (when present);

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://github.com/alessant/HEE

24:18 A. Antelmi et al.

(3) maximization of a task-specific sub-objective that can be embedded into the objective in
Equation (1). An example of such a sub-objective is the maximization of the inter-event
proximity used in Event2Vec [37], which describes the pairwise proximity between hy-
peredges.

No regularization. Surprisingly, most of the PP methods do not employ any kind of regu-
larization over the learned embeddings (with the only exceptions of MSC-LBSN [146] and
HOBE [144]). For methods based on the cosine similarity, e.g., Lbsn2Vec(++) [175], the reg-
ularization may not be necessary since the magnitude of the embedding vectors does not
impact the cosine of the angle between them. However, it is unclear whether the lack of reg-
ularization may lead to overfitting for methods based on the dot-product, like HEBE [61, 62],
Event2Vec [37], FOBE [144], and HGE [179].

Despite being similar at a higher level, each PP technique is characterized by the optimization ob-
jective, usually optimized via Stochastic Gradient Descent, which shapes how the node/hyperedge
embeddings are learned. The optimization criterion can take different forms like similarity
maximization (e.g., Lbsn2Vec(++) [175], HGE [179], MSC-LBSN [146]), mean squared error (e.g.,
HOBE [144]), Kullback—-Leibler divergence (e.g., FOBE [144], Event2Vec [37]), or Bayesian Personal-
ized Ranking [126] (e.g., HEBE (-PO/PE) [61, 62]). Clearly, the loss function takes into account the
characteristics of the task to solve.

PP methods also differ in how they transfer the high-order relation conveyed by a hyperedge
and whether they explicitly learn a representation for the hyperedge itself. Almost all methods
of this family maximize the embedding similarity of nodes within the same hyperedge by pair-
wise computing the cosine similarity (Lbsn2Vec(++) [175], MSC-LBSN [146]) or the dot-product
(HEBE [61], Event2Vec [37], HOBE/FOBE [144]) between two embedding vectors. An exception is
made by HGE [179], which treats a hyperedge as a single set of nodes. Specifically, HGE [179] gener-
alizes the standard dot-product operation between two vectors to an indefinite number of vectors
for computing the similarity score of the nodes in a hyperedge. However, this dot-product gener-
alization, called multilinear map, is meaningful only from an algebraic perspective while having
no geometric interpretation. Among all PP methods, only HEBE-PE [61, 62] and Event2Vec [37]
also learn a latent representation for hyperedges. In HEBE-PE [61, 62], the hyperedge embedding
is learned by maximizing the similarity between the hyperedge vector and the average representa-
tion of the nodes within that hyperedge. In Event2Vec [37], the latent hyperedge representation
is given by combining via a weighted dot-product the embedding of the nodes within it.

Another important observation is that all PP methods but Event2vec [37] only consider the first-
order proximity, which could be sub-optimal. In particular, Event2Vec [37] captures the second-
order proximity by modeling hyperedge proximity. Inspired by Factorization Machines [125], the
authors proposed a new operation combining all the interactions between pairs of embedding vec-
tors in the same hyperedge. Then, hyperedge proximity is modeled with the dot-product between
the embedding and the just described combination.

Remarks. Proximity-preserving methods share the same overall design: the definition of (1) a
similarity measure as a function of the embeddings and (2) a criterion to optimize for preserving
the node proximity and possibly task-specific goals. This simple design makes PP methods ver-
satile enough to adapt to peculiar tasks easily by means of specifically crafted optimization (sub-
)objectives. This elementary structure also allows to naturally handle heterogeneous, non-uniform,
and directed hypergraphs. In particular, the notion of directionality can be encoded within the ob-
jective function. For instance, in the case of inter-hyperedge directed hypergraphs, the criterion
to optimize could enforce the embedding of the tail node(s) to have some particular character-
istics (e.g., being the centroid of the embedding of all nodes within a hyperedge). The injection

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:19

of dynamic information into the latent representation via a PP method deserves separate consid-
erations. In this case, the dynamic setting would make the overall method’s structure harder to
design, consequently conflicting with the underlying spirit of these techniques, which tend to
be straightforward and efficient. Currently, no PP method is defined over directed or dynamic
hypergraphs.

In contrast with deep representation learning (Section 5.3), we can define these methods as
shallow because they optimize a unique embedding vector (i.e., a single layer of abstraction) for
each node/hyperedge. These approaches are inherently transductive, which prevents them from
being used in inductive applications. A drawback of most of these methods is their lack of captur-
ing structural hypergraph information besides single-hop neighbors. Moreover, since similarity
is usually defined as a function of the dot-product, these approaches may fail to model the po-
tential non-linear relationship between nodes/hyperedges. Finally, PP methods on hypergraphs
often treat the hypernetwork as its clique expansion counterpart, which may lose the benefit of
modeling the problem in terms of high-order interactions in the first place. Table 2 in the online
Supplemental Material (Appendix E) summarizes the methods described in this section.

5.3 (Deep) Neural Network Models

Motivation. Deep Learning (DL) has gained remarkable impetus in speech, language, and visual
detection systems [55]. This success drove the research community to either directly apply DL
models from other fields on graphs or design novel neural network models for specifically embed-
ding graph-shaped data [26]. Hypergraph neural networks (HNNs) stem from graph NNs (GNNs),
which currently embody the state-of-the-art in graph representation learning [161]. For this rea-
son, the motivation and intuition behind GNNs also apply to hypergraph-like input data. (Deep)
HNNSs have been utilized to capture the high-order non-linear relationships between the nodes of
a hypergraph without requiring hand-crafted features (i.e., providing end-to-end solutions). Fur-
thermore, state-of-the-art NN frameworks (e.g., Pytorch, Keras, TensorFlow) leverage hardware
acceleration (e.g., GPUs) to speed up the computation, making it possible to train very deep, and
thus powerful, models efficiently.

Methods. Unlike (most of the) non-neural embedding techniques, the (deep) HNN framework
requires having node features x,, € R Vo € V (usually arranged into a feature matrix X €
R™) as input to the model. When node features are not available, these can be initialized using a
(parametric) encoding (e.g., [172, 191]), one-hot encoding (e.g., [40, 70, 88]), or ad hoc initializations
(e.g., [34, 60, 110, 172]). Such initial representation is then fed to a (deep) neural network that
learns the node (hyperedge/hypergraph) representation either in an end-to-end fashion or in a
two-step procedure. In the former case, the learning process is guided by the specific task; thus,
the embeddings are optimized (according to the loss function) to solve the problem at hand better.
In the latter case, the embeddings are learned in an unsupervised fashion or by solving a fake
task (e.g., [36, 74, 78]). Then, such embeddings are fed to another model, e.g., a classifier that may
not be a neural network, to solve the task (e.g., [120, 191]).

In the following, we focus our description on the parts of the NN that explicitly or implicitly
learn the latent hypergraph representation, giving less importance to the readout layers.

5.3.1 Hypergraph Convolutional Networks. Graph convolution networks are by far the most
popular technique for learning graph embedding. The convolution operator on (hyper)graphs
generalizes the operation of convolution from grid data to graph data [161] and can be elegantly
motivated using the theory of (hyper)graph signal processing as a generalization of Euclidean
convolutions to non-Euclidean data.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:20 A. Antelmi et al.

In the literature, (hyper)graph convolutions are usually classified between spatial and spectral
based on how the convolution operator is defined [161, 192]. On the one hand, spectral graph
convolution uses the Fourier transform to transform the graph signal to the spectral domain, where
it carries out the convolution operation. On the other hand, spatial graph convolution aggregates
the node features from the perspective of the spatial domain [187]. However, as thoroughly shown
in [13, 14], this distinction is becoming less and less clear since many graph convolutions can be
defined in both spectral and spatial domains. Based on this consideration, we prefer to avoid such
a blurry categorization in our survey in favor of a more general framework encompassing almost
all convolutional methods while still giving some space to peculiar spectral convolutions.

As Hamilton et al. [65] show, graph convolutions are a particular case of the more general and
reader-friendly Message-passing Framework (MPF), whose underlying intuition is straightforward.
Given an initial hypergraph representation (e.g., nodes’ feature matrix X*), the MPF iteratively
updates it according to the following process. At each iteration, every node aggregates information
from its local neighborhood, and, as the iterations progress, each node embedding contains more
and more information from further reaches of the hypergraph. Hence, node embeddings encode
two-fold knowledge: structural and feature-based information, both deriving from iteratively gath-
ering neighbors’ representations according to the hypergraph structure. Each message-passing
step is represented as a layer of a (deep) hypergraph convolutional NN (convHNN), which may act
as input to the next layer.

Conversely to graphs where every edge simply connects two nodes, hyperedges in hypergraphs
encode many-to-many interactions among a set of two or more nodes. Thus, to properly harness
the high-order nature of hypergraphs, the propagation of the information over nodes should con-
sider such richer relations. This intuition can be accomplished using a two-stage (a.k.a. two-level
or two-step) update/aggregation process [7]:

= fyg ()0 x50 00) x0T = fr (3 (e @) (4)

where xe),xg,l) are the latent representations of hyperedges and nodes at layer [, respectively;

fvse, few are two (non-linear) parametric permutation-invariant aggregation functions known
as node-to-hyperedge and hyperedge-to-node aggregation, respectively; and o) ¢ Rdrxdia gnd
0! e RY*%.1 are the learnable convolutional parameters. As for standard NNs, parameters are
learned via the optimization of objective functions specifically designed for the given task. The
optimization is performed using backpropagation and gradient-descent-based algorithms like Sto-
chastic Gradient Descent (SGD) and Adam [90]. For simplicity, we omit the input argument H and
the potential set of hyper-parameters from Equation (4). Equation (4) is very similar to the one
proposed by Chien et al. [35] (A11Set [35]), and it generalizes many existing works (UNIGNN [79],
HypersSaR [145], HyperGAT [40], HNHN [43], HGC-RNN [177], [7]). Peculiar two-stage MP processes
are the ones proposed in [60] and [63]. In [60], Guan et al. define fy_g as a hyperedge shrink-
ing function in which they select the most informative (like an attention mechanism) nodes to
update the hyperedge representation. In [63], instead, one of the stages is fixed. Specifically, node
embeddings are aggregated using a mean and are not updated in the MP phase. Node embeddings
are learned beforehand using a Graph Convolutional NN, and their weighted mean is used as the
initial hyperedge representations.

A slightly different two-stage MPF is proposed by Srinivasan et al. [136], where the nodes and
the hyperedges are updated simultaneously (in Equation (4), the updates happen sequentially) and
where the aggregation functions also consider the embeddings of the second order neighbors.

While only the few works cited above rely on the two-stage MPF, most of the hypergraph
convolutional NNs usually resort to the hypergraph’s (weighted) clique expansion, thus reducing

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:21

Equation (4) to a single-stage MPF (as for graphs) first introduced by Feng et al. [48] (HGNN). In
this case, the tth (single-stage) hypergraph convolutional layer can be elegantly defined as

update

—_—
XM = (R @), (5)
aggregate

where R € R™" is the so-called reference operator [57], usually instantiated as a “surrogate” of the
adjacency matrix;) € R4*d1 are the learnable convolutional parameters (with d; the dimen-
sion of the latent representation at layer [); and o is a non-linear activation function (e.g., sigmoid).
It is worth noting that although the MPF is flexible enough to allow to send different messages
across the neighbors, the convolutional layer in Equation (5) assumes that every node sends
the same message to each of its neighbors. Moreover, since the update of the node embeddings
happens directly, hyperedge embeddings are not explicitly learned in the process. However, one
can learn hyperedge embeddings by resorting to the dual transformation and applying the MPF
(EHGNN [88]). To reduce the two-section graph connectivity and speed up the learning process, Ya-
dati et al. [171] ((Fast)HyperGCN) proposed replacing each hyperedge with an incomplete clique.

Equation (5) covers most of the hypergraph convolutional models (discussed later); however,
there are exceptions that may only fit in Equation (4). For instance, H*SegRec [95] defines an ad
hoc convolutional operation in the hyperbolic space to alleviate the sparsity issue in hypergraphs
for recommendation tasks, while DHGNN [86] and KHNN [99] use a 1D convolution and a parametric
aggregation function to better model discriminative information among nodes. In [170], Yadati
proposed G-MPNN [170], a generalized MPF able to handle multi-relational ordered hypergraphs,
and MPNN-R to handle recursive hypergraphs.

There are also methods that use a non-parametric aggregation function just to propagate infor-
mation in the hypergraph and to initialize node representations, such as DHCN [166] and MHCN [181].

In the following, we discuss five convolutional design factors (i.e., reference operator, skip-
connections, attention mechanism, gated update, and spectral convolution) that impact how the
information is propagated and aggregated during the learning process. These design choices may
be coupled together in the same network architecture.

Reference operator. In Equation (5), the matrix R describes how embeddings are aggregated. In its
simplest form, R is exactly the adjacency matrix of the hypergraph clique expansion, defined as
HH™ — D,, (NHP [172], SHCN [33], HHNE [18], DHCN [166] HGNN* [53]). In this case, the aggregation
function is the sum of the representations of the neighbor nodes.

However, a not normalized adjacency matrix may hinder the optimization process as node
features may be in very different ranges and, further, feature values may increase indefi-
nitely on deep networks. For these reasons, the adjacency matrix is commonly normalized.
The row-normalized adjacency matrix becomes Ryoy = D,'HD;?WHT (HCHA [10], HHGR [185],
GC-HGNN [121], and IHGNN [34] without the hyperedge-related matrices), while it has the form

1 1

Rgym = D,”HD;'WH'D,? if symmetrically normalized (HGNN [48], GC-HGNN [121], DH-HGCN [68],
HyperCTR [70], DualHGNN [159], DualHGCN [169], MHGNN [9], STHAN-SR [134], MultiHGNN [76],
HGDD [119], STHGCN [155], F2HNN [110], S?HCN [109], AdaHGNN [160], HybridHGCN [77],
HyperINF [87], MT-HGCN [154], HGNN* [53], HGNNA [41]).

This latter formulation is usually preferred since row normalization does not consider the
connectivity of the neighbor nodes and, as such, gives the same relative importance to highly
and sparsely connected nodes. It is worth noticing that both normalized versions also consider
self-loops (i.e., R has a nonzero diagonal); thus, the representation of a given node at layer [is
transformed and included in its representation at layer I + 1 (i.e., skip-connection). Node-level

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:22 A. Antelmi et al.

normalization is also possible, and in such a case, W (DHCF [84], HAIN [15]) and/or D, (HHNE [18],
MGCN [32], HyperRec [152], [164]) can be removed from the computation of Rgym/row- The set of
learnable parameters is shared among all nodes.

An interesting approach is devised by Liu et al. in HGCELM [100]. Specifically, the authors de-
fined a single-layered random hypergraph convolution based on Equation (5) with Ry, where
the parameters are initialized randomly and used to perform a random projection (inspired by ex-
treme learning machines [73]). Such representations are then fed to a hypergraph convolutional
regression layer to predict node labels.

In both HCCF [162] and SHT [163], the hypergraph topology is not fixed but jointly learned with
the embeddings. To do so, the reference operator is parametric, and it also includes a nonlinear
activation function (i.e., LeakyReLU [167]).

Skip-connections. Over-smoothing is a well-known problem of deep (hyper)graph convolutional
networks [30]. Over-smoothing occurs when the information aggregated from the neighbors dur-
ing the message passing starts to dominate the updated node representations. This phenomenon
happens as the receptive field of the convolution grows exponentially with respect to the model
depth. A possible solution to alleviate this issue is to use skip-connections (a.k.a., residual con-
nections/layer), which try to directly preserve the node information from the previous round of
message passing in the update. This concept can also be generalized by including all (or some of
the) previous node representations. Hypergraph convolution can be integrated with generalized
skip-connections. In this case, Equation (5) becomes

]
X+ = G(Rx<’>c~)<l> +) X090) ©)
j=0

e
skip-connections

where @) € R4*d141 gre the skip-connection parameters.

If the skip-connection is non-parametric and involves only the last layer, i.e, ®? = Iz, and
®(<D = 0, it is called identity mapping, and it simply “pushes forward” the representation of
the nodes at layer [(DHCF [84], HCHA [10]). If parametric, the skip-connection can either have a
different set of parameters w.r.t. the convolution (DualHGCN [169], HAIN [15]) or share the same set
of parameters, i.e., ©) = &) with (<) = 0 (SHCN [33], HHNE [18], MGCN [32], HyperRec [152]).
Note that if R has a non-zero diagonal (i.e., it considers self-loops), the skip-connection of the
previous layer with shared parameters is already included in Equation (5) (e.g., HGNN [48]). The
identity mapping can also be performed on the aggregated messages rather than the previous
node representation(s), and it can be combined with the “standard” skip-connection as in ResHGNN
and UniGCNII [79].

A particular case of the skip-connection is the initial residual connection that pushes forward
only the initial representation instead of the representation of the previous layer, i.e., ®>% = 0.
For instance, in ResHGNN [76] and HyperINF [87], the residual connection is not parameterized but
weighted, specifically, ®° = ¢;I and 0" = (1 - &)1, where a; is a hyperparameter that balances
the contributions of the previous representations. An alternative to the additive skip-connection is
the multiplicative-skip connection that aims to learn a nonlinear gate to modulate the embeddings
at a feature-wise granularity through dimension re-weighting (MHCN [181]).

Attention mechanism. The aggregation function in Equation (5) represents the (normalized) aver-
age overall neighbor nodes. Even though straightforward, this choice might be sub-optimal as it
gives all neighbors the same importance. A natural way to overcome this limitation is to weigh
each neighbor differently. This solution is the basic idea behind the attention mechanism, i.e., a

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:23

neural network that learns how to weight the neighbor nodes, first introduced for graphs by Velick-
ovic et al. [150]. In a nutshell, (hyper)graph attention is a particular case of (H)GNN in which the
message sent to the neighbors is not the same.

The literature offers different types of attention mechanisms, and the most popular in
hypergraphs are additive attention (DHCN [166], DHGNN [86], DualHGNN [159], HNN [139],
HGC-RNN [177]) and multiplicative attention (HyperGAT [40], SHARE [153], [164], HGNNA [41],
HGAT [29], DH-HGCN [68], [140]). Although less popular on hypergraphs, it is also possible to
add multiple attention “heads” (HCHA [10], DHAT [105], SHT [163]), where each one computes
k different attention weights on independently parameterized attention layers. Eventually, the
aggregated messages using the k attentions are linearly combined. Attention mechanisms can
also help combine node embeddings in tasks like group recommendation (HHGR [185], HCR [85]) or
handling temporal sequences (e.g., STHAN-(S)R [134], (D) STHGCN [155]). Recently, thanks to the
success of the transformer architecture [149], self-attention mechanisms are starting to appear in
convHNN (DHGNN [86], HOT [89], SSF [72], Hyper-SAGNN [191], HyperRec [152]), as widely used
to combine sequential node/hyperedge embeddings for task-specific purposes (Higashi [190],
DualHGNN [159], DHAT [105], HyperTeNet [151], H®SeqRec [95]).

Gated updates. Before the advent of transformer architectures, recurrent neural networks were the
standard tool to deal with sequential inputs. In hypergraphs, the sequential inputs can refer to (1)
node level, i.e., node features change over time, or (2) structural level, i.e., the hypergraph topol-
ogy changes over time. In the node-level case, the neighbors’ information contains not only their
current hidden state but also a completely new observation. In this setting, the main mechanisms
used are Gated Recurrent Units (GRUs) ([164], HGC-RNN [177]), Gated GNN [96] ([156]) and Gated
Linear Units (GLUs) stacked on top of convolutional layers (MT-HGCN [154], (D) STHGCN [155]). As
far as we know, there are no relevant hypergraph embedding techniques dealing with structural
sequential input.

Spectral convolution. Spectral hypergraph convolution relies on the spectral (hyper)graph theory,
and it is the basis of the very first convHNN method proposed by Feng et al. [48] (HGNN). As pre-
viously discussed, HGNN can also be interpreted as a special case of the MPF (see Equation (5));
however, it could not be straightforward to directly map a particular spectral hypergraph convo-
lution method in the MPF, though it could be argued that it is possible [13].

The main concept behind spectral hypergraph convolution is the connection between the
Fourier transform and the Laplace operator. We can define hypergraph Fourier transforms of a
hypergraph signal through the eigendecomposition of the hypergraph Laplacian, where the eigen-
values represent hypergraph frequencies (i.e., the spectrum of the hypergraph), and eigenvectors
denote frequency components (i.e., hypergraph Fourier basis). Then the convolution in the spec-
tral domain is defined via point-wise products in the transformed Fourier space (HpLapGCN [49],
pLapHGNN [108]).

Instead of Fourier basis, it is possible to employ Wavelet basis as in HGWNN [117] and HWNN [138],
where the hypergraph wavelet-transform projects graph signal from the vertex domain onto the
spectral domain.

5.3.2 Random Walk-based Approaches. Random walk (RW) is a common alternative to convo-
lution to encode the concept of closeness. A nice and commonly used property of an RW on a
(hyper)graph is its analogy with sentences in a text: a path is a sequence of nodes (and hyper-
edges) like a phrase is a sequence of words. This similitude allows leveraging the distributional
hypothesis in linguistics, stating that words that occur in the same contexts tend to have similar
meanings [69]. Likewise, nodes sharing the same structural context should be close to each other

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:24 A. Antelmi et al.

in the latent space. This analogy enables the application of natural language processing techniques
to (hyper)graphs (DeepWalk [122]).

In this context, an established approach follows the two-step framework introduced in Deep-
Walk: First, walks in the hypernetwork capture the structural context, and then node embed-
dings are learned via a natural language processing model, usually Skip-gram and CBOW [114].
Finally, the so-obtained node representations can be the input either of a readout layer
(Hyper2Vec/NHNE [74, 75], Hyper-gram [78], DHHE [36], HEMR [91]) or of another neural network
module that fine-tunes the embeddings (DHE [120], Hyper-SAGNN [191]). In [198] (HRSC), the just
described method (using CBOW) is applied on the two-section graph, which, however, fails to
learn the representation of the hyperedges. Thus, to address this issue, the authors proposed a
novel negative sampling-based set constraint objective function.

The nature of hypergraphs allows to inherently generalize existing graph RW approaches
to these structures, but their richer semantics requires defining hypergraph-specific strate-
gies. For instance, resembling the exploration-exploitation strategy proposed by node2vec [59],
Hyper2Vec [75] exploits a degree-biased second-order RW to sample paths in a homogeneous hy-
pergraph. A similar strategy is also proposed in Hyper-SAGNN [191]. Conversely, the hyper-path-
based RW approach of Hyper-gram [78] captures the idea that hyperedges may encode indecom-
posable relationships in a heterogeneous hypergraph. On the same line, DHE [120] also proposes a
new RW model to acquire co-member information in each hyperedge.

5.3.3 Encoder-based Approaches. When it comes to learning low-dimensional embeddings, the
encoder-decoder architecture is the go-to approach in machine learning. However, this type of
architecture may fail in capturing structural information encoded by hypergraph-like structured
data. For this reason, these networks are usually included as a sub-module of bigger networks. For
instance, Hyper-SAGNN [191] uses this approach to initialize node representations, while DHNE [147]
uses an autoencoder to learn a first latent representation for the nodes, then fine-tune using a
neural network specifically designed to preserve the second-order proximity. More “sophisticated”
approaches make use of Variational Autoencoders (HeteHG-VAE [45]) and DeepSets (DHE [120]).
In general, when coupled with specific decoders, these methods are mostly used in task-specific
hypergraph embeddings (e.g., HeteHG-VAE [45], Event2Vec [37], HNN-HM [97]).

Remarks. Thanks to their versatility, HNNs can be easily adapted to a broad spectrum of tasks,
such as (multi-class) classification (e.g., HpLapGCN [49], HyperGCN [171], DualHGNN [159], DHE [120]),
regression (e.g., [164], HGC-RNN [177]), link prediction (e.g., He teHG-VAE [45], DHCF [84], DHNE [147]),
and recommendation (e.g., HHGR [185], HyperRec [152], SHARE [153]). The modularity of NN meth-
ods also eases the fusion of different input channels. For instance, using the dual of a hyper-
graph makes it possible to have the same architecture designed for hypergraph node embeddings
to learn hyperedge embeddings (e.g., NHNE [74]). In general, multi-channel input can be help-
ful in domain-specific tasks, for example, when dealing with heterogeneous hypergraphs (e.g.,
MHCN [181], DHCF [84]). HNNs can also manage dynamic hypergraphs [164] or, in general, tasks
that require modeling sequential information (e.g., H*SeqRec [95]).

Moreover, HNNs allow performing transfer learning and reusing well-established architectures
on various tasks by simply designing the readout layer(s) or a task-specific loss function. The typ-
ical learning setting of HNNs is (semi-)supervised transductive learning with only few exceptions
like DHE [120], G-MPNN [170], A11Set [35], and HGAT [29] that can be used in inductive settings.

As for (deep) NNs in general, HNNs require much data to be adequately trained, and the hyper-
parameter tuning can be costly. Another drawback of HNNs, especially on very deep architectures,

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:25

is that the training phase may require high computational power (e.g., GPUs, TPUs), hampering
the applicability on edge devices.

Among all the HNNs techniques, convHNNs are nowadays predominant in the literature thanks
to their superior performance. This trend is evident from Table 3 in the online Supplemental Mate-
rial (Appendix F): both encoder-based and random-walk-based methods have almost disappeared
since 2020. The success of such a methodology is mainly due to the reuse of the knowledge coming
from the graph representation learning literature. Akin to GNNs, these approaches learn the node
representations that can then be aggregated to learn the latent representations of hyperedges (e.g.,
NHP [172]) or the whole hypergraph (e.g., [164]). Recently the trend seems to be drifting toward
convolutional methods specifically designed for HGs (e.g., [136], A11Set [35]), where the hyper-
edge embeddings are explicitly learned.

However, convHNNSs are generally more demanding in terms of computational requirements
than encoder-based and random-walk-based methods; thus, such approaches should be preferred
in case of limited computational capabilities. Further, the clique-expansion transformation used
by many convolutional approaches is a possible limitation since the high-order nature of the
relations is only indirectly exploited in the learning process. An important strength of random-
walk-based methods is the universality of the approach that can be (almost) seamlessly applied to
any hypergraphs. Encoder-based methods, instead, may require some effort in the design of the
encoder/decoder architecture. Still, when combined together, random-walk- and encoder-based
methods can achieve state-of-the-art performance, e.g., Hyper-SAGNN [191] and DHE [120].

Task-wise, we do not notice any particular trend: all (deep) neural network approaches have
been applied successfully on classification, link prediction, and recommendation tasks. Nonethe-
less, when dealing with dynamic or multi-channel hypergraphs, convHNNs are preferable since
they can easily be designed to handle recurrent or multi-channel inputs.

5.4 Comparison of Hypergraph Representation Learning Models

All methods discussed in the previous sections have distinctive characteristics (see Table 2), making
them fit specific application domains and constraints. In general, we can observe that spectral-based
embedding algorithms have been little used in real-world, large-scale applications due to their
scalability issues. Nonetheless, these methods represent a viable choice when dealing with small
datasets. The simple design of proximity-preserving approaches makes them particularly suitable
when we aim to take advantage of prior domain knowledge that can easily embed in the learning
procedure via the design of specific similarity functions. Akin to spectral methods, PP methods
work better on small to medium-scale datasets. Currently, (Deep) NN methods embody the state of
the art in hypergraph representation learning, and the vast majority of embedding methods belong
to this category. This trend directly derives from the high-quality performance these methods
achieve and the possibility of performing end-to-end learning. Further, the flexibility of the MPF
allows capturing the high-order relationships encoded by each hyperedge. Hypergraph NN scale
better than the other families of HG embedding techniques and, thus, can be applied to large-scale
datasets. However, the training of particularly deep networks may be hardware-demanding.

6 LEARNING TASKS AND APPLICATIONS

Hypergraph representation learning is functional to solve a plethora of graph analytic tasks as the
learned latent representations allow the efficient execution (in both time and space) of traditional
vector-based algorithms. Based on consolidated surveys on graph representation learning [16, 25],
in this work, we classify existing applications in which hypergraph embedding came into play
according to whether they focused on nodes or hyperedges. It is worth noting that we only match

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:26 A. Antelmi et al.

Table 2. Comparison of Hypergraph Representation Learning Techniques

Embedding Method Pros Cons

Spectral learning (1) Consider global structure; (2) Solid (1) Cannot capture high-order
theoretical foundation; (3) Easy to interactions (transformation to clique
implement and parallelize. graphs); (2) Scalability issues (in terms

of computational time and storage).

Proximity-preserving (1) Simple and versatile design based on (1) May not model high-order non-linear
node similarity maximization; (2) Easy ~ relations beyond single-hop neighbors
to adapt to specific tasks. (transformation to clique graphs); (2)

May suffer from scalability issues.
(Deep) Neural networks (1) Capture high-order and non-linear (1) Hardware demanding training; (2)
relations; (2) High versatility; (3) Can High computational cost; (3) May
easily embed both structural and require an extensive phase of
additional information; (4) Transfer hyper-parameter tuning.
learning capabilities.

each work with the task explicitly reported in the corresponding article. Please refer to Table 4
(Appendix G) for a list of the most commonly used datasets across the reviewed works.

6.1 Node-related Learning Tasks and Applications

In this section, we describe the role of hypergraph representation learning in relation to classical
learning tasks defined on the nodes of a hypergraph, e.g., classification, clustering, and recommen-
dation. For each task, we further describe the application domain(s) where it has been exploited.

6.1.1 Node Classification. Node classification is a supervised task in which the goal is to as-
sign the correct label to each unlabeled node in the hypergraph based on the patterns learned
from the other already labeled nodes (supervision). Node classification is one of the most common
tasks discussed in the hypergraph embedding literature and finds wide application in (possibly
multi-label) event (HEBE-(PE/PO) [61, 62], Event2Vec [37]), movie (e.g., DHNE [147], HRSC [198],
DualHGNN [159]), authorship (e.g., HyperGCN [171], Hyper2Vec/NHNE [74, 75], HWNN [138]), cita-
tion (e.g., DHGNN [86], HCHA [10], UNIGNN [79], LE [174]), image (e.g., SSHGDA [103], AdaHGNN [160],
HGWNN [117]), and item (e.g., DualHGCN [169], Al11Set [35], DualHGCN [169]) classification, among
others (e.g., HOT [89], EHGNN [88], DHE [120]).

Node classification is applied in a (semi-)supervised setting, and, in the literature, there are two
main approaches to tackle it. The first approach consists of a three-step sequential procedure, in
which (1) the embedding method first learns the latent representation of the nodes, (2) then an
existing classifier is trained on the labeled instances, and (3) finally, the trained classifier predicts
the class of an unlabeled node given its embedding. SVM (e.g., DHNE [147], HEBE-(PE/PO) [61, 62],
SSHGDA [103]), logistic regression (e.g., HEBE-(PE/PO) [61, 62], Hyper2Vec/NHNE [74, 75],
Event2Vec [37]), and k-nearest neighbors (e.g., SSHGDA [103]) are the most commonly used
classifiers. The second approach relates to (deep) neural networks. Specifically, the task is solved
in an end-to-end fashion where the first part of the network explicitly or implicitly learns the
node embeddings, while the readout layer(s) solve the specific classification (e.g., A11Set [35],
HOT [89], HNHN [43]).

6.1.2 Node Clustering. The goal of node clustering is to group similar nodes together in a way
that nodes in the same cluster are more similar to each other than nodes in other groups. Node
clustering is an example of an unsupervised learning setting, and it is usually applied when no
node labels are available to find affinities between groups of nodes. The classical workflow is first
to learn the low-dimensional representations of the nodes to then apply the desired traditional

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:27

clustering algorithm on the latent vectors. All works included in this survey (Zhou et al. [194],
Ren et al. [124], Saito et al. [131], Event2Vec [37]) adopt k-means as the clustering algorithm.
Specifically, Event2Vec [37] exploits this task to test the expressiveness of the learned node
embeddings in capturing within-event and cross-event relationships in event data, while Ren
et al. address the problem of clustering object views.

6.1.3 Node Recommendation. The task of node recommendation consists in finding the best
nodes of interest (e.g., items) for a given node (e.g., user) based on certain criteria [44, 127].
In this context, hypergraphs embody a valuable tool to structurally encode the inherent high-
order relationships that may arise beyond the classical user-item relation. For instance, hy-
pergraphs can explicitly model additional information attached to the user-item interaction,
such as emotions (e.g., HGE [179], SHCN [33]), item categories or properties (e.g., HHE [197],
HEMR [91], HyperCTR [70]), search query (e.g., HyperSAR [145], THGNN [34]), purchase his-
tory (e.g., HyperREC [152], H2SeqRec [95]), social relationships (e.g., MHCN [181]), user sessions
(e.g., SHARE [153], DHCN [166], GC-HGNN [121]), or user/item groups (e.g., DHCF [84], HHGR [185],
HCR [85]). In general, recommender systems based on hypergraphs have been used for docu-
ment/book (e.g., HHE [197], H2SeqRec [95], KHNN [99]), movie (e.g., HGE [179], DHCF [84], HHGR [185]),
product (e.g., HyperRec [152], SHCN [33], SHARE [153]), song (e.g., FOBE/HOBE [143], MHCN [181],
HEMR [91]), video (e.g., HyperCTR [70]), business/place (e.g., HyperSAR [145], MHCN [181], HHGR [185],
DH-HGCN [68]), and news (e.g., DHCF [84]) recommendations, and others (e.g., GC-HGNN [121],
HCR [85], [156]).

6.2 Hyperedge-related Tasks and Applications

Next, we discuss the role of hypergraph representation learning concerning the link prediction
task, its variations, and associated application domain(s).

6.2.1 Link Prediction. In traditional graphs, the link prediction task involves inferring new rela-
tionships or still unknown interactions between pairs of entities based on their properties and the
currently observed links [98]. In hypergraphs, the problem of hyperlink prediction involves pre-
dicting missing hyperedges from the set 2/V1\ & based on the current set of observed hyperedges &.
When dealing with k-uniform hypergraphs, the size of the hyperedge to predict is bounded by the
nature of the modeled relation [89, 147, 191]. However, in the more general setting of non-uniform
hypergraphs, the variable cardinality of a hyperedge makes link prediction methods defined for
graphs infeasible as they are based on exactly two input features, i.e., those of the two vertices
potentially forming a link [113, 172].

To overcome the difficulties mentioned above, all methods devised for hyperlink prediction
heavily rely on negative sampling techniques to discard not meaningful relations in both train-
ing and evaluation phases (e.g., MSC-LBSN [146], NHP [172]). Then, the existence of a given hyper-
edge is based on a similarity score evaluated over pairs of embedding vectors corresponding to
the nodes that should be contained in the relation. The similarity score can be computed with
either some similarity measures, such as Euclidean distance and cosine similarity (e.g., NHNE [74],
LBSN2Vec [175, 176]), or a more complex edge classifier, such as logistic regression. In this last
case, the link prediction task is treated as a classification problem where the target class label in-
dicates the presence or absence of a link between a pair of nodes (e.g., G-MPNN [170], HNN [139],
DualHGCN [169]).

In the literature, this task has been applied to detect (user, location, activity), (user, movie, tag),
(user, drug, reaction), and (synset, relation type, synset) relations (e.g., DHNE [147], HRSC [198],
Hyper-SAGNN [191], HOT [89]). Other application domains relate to predicting hyperlinks in
non-uniform (possibly) heterogeneous collaboration (e.g., HeteHG-VAE [45], NHP [172], NHNE [74]),

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:28 A. Antelmi et al.

user-movie interest (e.g., HeteHG-VAE [45], NHNE [74]), user-item (e.g., DualHGCN [169], [156],
HNN [139]), and chemical/drug reaction (e.g., HHNE [18], HGDD [119]) networks.

6.2.2 Network Reconstruction. The task of network reconstruction can be seen as a particular
case of link prediction, in which all hyperedges of the original hypernetwork need to be inferred
(DHNE [147], Hyper-gram [78]). Another variation of the problem, a.k.a. hyperedge expansion, has
been proposed by Srinivasan et al. [136] and is based on set theory. In this case, the task consists
of predicting the missing nodes (elements) from a given hyperedge (set).

6.3 Other Applications

In the following, we provide a brief description of other relevant applications.

6.3.1 Time-series Forecasting. Time-series forecasting is a subclass of regression problems, and,
specifically, it is the task of fitting a model to historical, timestamped data in order to predict fu-
ture values. This umbrella term includes several domain-specific tasks in which hypergraphs have
been exploited, such as traffic prediction (MT-HGCN [154], DHAT [105]), passenger flow prediction
(STHGCN [155]), gas and taxi demand (HGC-RNN [177]), and stock selection (STHAN-SR [134]). In this
context, homogeneous and non-uniform hypergraphs model spatio-temporal information.

6.3.2 Visualization. Visualizing the outcomes of a hypergraph representation learning algo-
rithm embodies a strong demonstration of whether the devised embedding method is preserving
the desired characteristic of the input network. After learning the low-dimensional latent vectors,
those are further projected into a two-dimensional space, usually via t-SNE [148], the state-of-
the-art tool to visualize high-dimensional data. Another way to go, common for spectral-based
methods, is to plot each node representation considering the two or three smallest eigenvectors
of the Laplacian matrix [194]. In the case of node classification or, when possible, clustering tasks,
each node category is colored differently: in this way, it is easy to grasp whether nodes belonging
to the same category or sharing the same characteristics are embedded close to each other. Some
methods discussed in this survey (e.g., Event2Vec [37], HyperGCN [171], DHE [120], HHNE [18]) use
this technique to compare their computed embeddings against some baselines.

6.3.3 Knowledge Hypergraphs. When it comes to model knowledge bases (KBs), graphs are the
go-to approach since they naturally represent ternary relations, i.e., facts of the form (head, relation,
tail), in KBs. Nonetheless, with n-ary relations, hypergraphs could be a valid alternative [46, 173].
Knowledge hypergraph embedding techniques are strictly interlinked to the task (usually predict-
ing facts); hence, it is hard to transfer these methodologies to different contexts.

6.3.4 Natural Sciences. Over the last decades, network science has become an established
framework to analyze interactions between biological and chemical agents [17]. In this context,
the task of hypergraph representation learning has been leveraged to predict the material removal
rate in chemical-mechanical processes [164, 165], multi-way chromatic interactions [188, 189],
genome features [190], and drug-disease association [119]. Other work also focused on medical-
related issues, such as cancer tissue classification [12], autism diagnosis [111], and plant disease
detection [133].

7 FUTURE DIRECTIONS

In the following, we discuss challenges and potential future directions related to hypergraph rep-
resentation learning.

Deep hypergraph representation learning. The last years have seen the rise of (deep) neural
hypergraph embeddings. This trend follows the trail of GNNs, which have shown outstanding per-

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:29

formance on graphs. However, most of the efforts have been devoted to adapting existing ideas
on graphs to hypergraphs. A real challenge for the future is developing neural models exclusively
designed for hypergraphs that can exploit their peculiar characteristics. For instance, most con-
vHNN methods approximate each hyperedge with a clique and, hence, lose the relation’s inde-
composable nature. A possible direction is to work toward MP functions that aggregate neighbors’
representations by directly exploiting high-order interactions rather than pairwise connections,
following the footsteps of [35, 136].

Beyond node embeddings. Most of the methods presented in this survey deal with node embed-
dings, with only a few exceptions that also consider hyperedges. Nonetheless, there is a need to
develop solutions able to learn representations for whole hypergraphs or sub-structures. These
methods can be useful in visualization [11], community detection [27], and hyper knowledge-
graph embedding [129] tasks. Following the spirit of the message-passing framework, a promising
direction is learning permutation-invariant functions able to aggregate the node/hyperedge repre-
sentations in a meaningful way for the task at hand.

Dynamic hypergraph embedding. Dynamicity is an essential characteristic of many networks
and can manifest either as time-varying features or structural interaction patterns [5, 16]. (Hy-
per)graphs may evolve in terms of node/edge structure (addition/removal) or information. These
characteristics cause the static embedding approach to fail as the hypergraph size is not fixed,
features may drift over time, and adding new nodes/edges requires efficiently updating represen-
tations [31]. Current work on dynamic hypergraph embedding assumes a transductive setting,
with a fixed node set and a variable set of hyperedges [87] or node features [95, 152, 154, 164, 177].
Still, a more challenging problem is predicting newly added nodes’ representations. As inductive
frameworks exist, the major challenge here is how to update the existing node representations
incrementally and adapt to the concept drift of the graph structure. Inspired by the graph repre-
sentation learning literature [66], a promising direction could be to learn functions that generate
embeddings by aggregating features from nodes’ neighborhoods instead of training individual
node embeddings.

Interpretability. Most state-of-the-art hypergraph embedding methods are built using convolu-
tions, usually in a layered architecture. The complexity of such models makes them expressive
enough to extract a good condensed hypergraph representation. Yet, the highly non-linear nature
of these models harms their interpretability. In general, to interpret an embedding, we need to find
an association between latent features and features of the original hypergraph. A possible direction
could be exploring the so-called disentangled representations [21]. Disentangled representation
learning [64, 94] may help to learn uncorrelated latent features, which may allow characterizing
the various underlying explanatory factors behind the learned factorized representations.

Scalability. Scalability is a critical requirement when dealing with many real-world networks.
Hypergraphs add further complexity as not only the number of nodes and hyperedges can scale
to millions but also the same hyperedges cardinality may be huge. Currently, little work exists to
improve hypergraph algorithms’ scalability (e.g., [171]); thus, scalable computational paradigms
and models are a critical challenge for future work. NetVec [112] embodies an effort toward this
direction by applying a coarsening strategy to preprocess data. In general, hypergraph coarsening
or partitioning strategies combined with parallel approaches may represent a valid approach.

Reproducibility. How to directly measure the quality of data representation is a long-standing
problem in representation learning [93]. Currently, the quality of the learned representation is
measured by indirectly executing a given set of relevant tasks. However, no standard benchmark
is currently available in terms of data and methods. In addition to the (not so rare) unavailabil-
ity of open-source implementations, this fragmentation leads to approaches difficult to reuse and

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

24:30 A. Antelmi et al.

compare. As suggested by Hamilton et al. [67] in the case of graph representation learning, ef-
fort should be put into defining a common framework describing—for a given task—the expected
network structure to encode, how we expect the models to encode this information, and possi-
ble constraints on the learned representation to clarify which approach should be used when in
real-world applications.

8 CONCLUSION

The ever-increasing development of computational capabilities and the advancements of theoreti-
cal models demand structures to unify and abstract real-world data with complex relations. Hyper-
graphs are a promising answer to this need; yet, the overall hypergraph research, or, specifically,
the hypergraph representation learning field, is still in its infancy, but the body of work on the
topic is growing rather quickly.

In this survey, we presented a systematic and thorough discussion about hypergraph representa-
tion learning. We identified in the literature three main families of approaches to the hypergraph
embedding problem: spectral, proximity-preserving, and (deep) neural network hypergraph em-
bedding methods.

e Spectral hypergraph embedding methods represent the first efforts toward learning vectorial
representations for hypergraphs. Despite their solid theoretical foundation, spectral meth-
ods struggle with large-scale hypergraphs, thus making them less appealing to the research
community in recent years.

Both proximity-preserving and (deep) neural network methods overcome this scalability

issue offering two very different approaches to the hypergraph representation learning

problem.

— Proximity-preserving methods use a standard machine learning pipeline where the
proximity of the nodes in the latent space is preserved through a loss function defined
on the distance (or similarity) between nodes. The loss function can also be designed to
embed additional constraints or information tied to the specific task at hand. Such an
easy design makes proximity-preserving methods adaptable to more disparate contexts.

— Nowadays, deep-learning-based methods are predominant thanks to their flexibility,
capacity, and performance. They take advantage of the experience from the graph repre-
sentation learning literature and the ever-increasing availability of high computational
power that allows training very large (i.e., deep) models. On the one hand, this inheritance
from graph representation learning has sped up the development of learning techniques
for hypergraphs. On the other hand, it has biased the researchers’ efforts toward methods
for hypergraphs that are adaptations of the ones for graphs. However, although similar,
hypergraphs have inherent characteristics that must be considered; e.g., they encode
higher-order relationships. Works like Chien et al. [35] and Srinivasan et al. [136] have
opened up new avenues thanks to message-passing functions working on (multi-)sets
rather than graph structures. We believe such contributions may inspire the research
community to develop novel representation learning frameworks designed explicitly for

hypergraphs.

One of the biggest challenges in hypergraph representation learning is the lack of (at least) an
affirmed tool that researchers could use as a reference to implement new embedding techniques,
while, for the graph counterpart, the community offers many alternatives like DGL,* Spektral,’

4https://docs.dgl.ai.
Shttps://graphneural network.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://docs.dgl.ai
https://graphneural.network

A Survey on Hypergraph Representation Learning 24:31

and Karate Club,’ just to name a few. Unluckily, there is no equivalent for hypergraphs, and
even libraries for hypernetwork analysis are not so numerous (e.g., HyperNetX’ [2], SimpleHy-
pergraph.jl® [3, 4], Hypergraphx® [101]) and as mature as, for example, NetworkX' for graphs.
With this survey, we aim to provide future researchers and practitioners with a comprehensive
understanding of current trends in addressing the hypergraph embedding problem and sketching
some guidelines for designing novel and practical hypergraph representation learning techniques.

REFERENCES

[1] S. Agarwal, K. Branson, and S. Belongie. 2006. Higher order learning with graphs. In Proc. of the 23rd Int. Conf. on
Machine Learning. ACM, 17-24.

[2] S. G. Aksoy, C. Joslyn, C. Ortiz Marrero, B. Praggastis, and E. Purvine. 2020. Hypernetwork science via high-order
hypergraph walks. EPJ Data Science 9, 1 (2020), 16.

[3] A.Antelmi, G. Cordasco, B. Kaminski, P. Pratat, V. Scarano, C. Spagnuolo, and P. Szufel. 2019. SimpleHypergraphs.jl—
Novel software framework for modelling and analysis of hypergraphs. In Algorithms and Models for the Web Graph.
Springer International Publishing, Cham, 115-129.

[4] A. Antelmi, G. Cordasco, B. Kaminski, P. Pralat, V. Scarano, C. Spagnuolo, and P. Szufel. 2020. Analyzing, exploring,
and visualizing complex networks via hypergraphs using simplehypergraphs.jl. Internet Mathematics 1, 1 (2020),
1-32.

[5] A. Antelmi, G. Cordasco, C. Spagnuolo, and V. Scarano. 2020. A design-methodology for epidemic dynamics via
time-varying hypergraphs. In Proc. of the 19th Int. Conf. on Autonomous Agents and Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 61-69.

[6] A. Antelmi, G. Cordasco, C. Spagnuolo, and P. Szufel. 2021. Social influence maximization in hypergraphs. Entropy
23,7 (2021). arxiv https://arxiv.org/abs/2010.04558

[7] D.Arya,D.K. Gupta, S. Rudinac, and M. Worring. 2020. HyperSAGE: Generalizing Inductive Representation Learning
on Hypergraphs.

[8] G. Ausiello, P. G. Franciosa, and D. Frigioni. 2001. Directed hypergraphs: Problems, algorithmic results, and a novel
decremental approach. In Proc. of the 7th Italian Conf. on Theoretical Computer Science. Springer-Verlag, 312-327.

[9] J. Bai, B. Gong, Y. Zhao, F. Lei, C. Yan, and Y. Gao. 2021. Multi-scale representation learning on hypergraph for 3d
shape retrieval and recognition. IEEE Trans. on Image Processing 30 (2021), 5327-5338.

[10] S. Bai, F. Zhang, and P. H. S. Torr. 2021. Hypergraph convolution and hypergraph attention. Pattern Recognition 110
(2021), 107637.

[11] Y.Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen, Y. Sun, and W. Wang. 2019. Unsupervised inductive graph-level
representation learning via graph-graph proximity. In Proc. of the 28th Int. Joint Conf. on Artificial Intelligence. Int.
Joint Conferences on Artificial Intelligence Organization, 1988-1994.

[12] A. B. Bakht, S. Javed, H. AlMarzouqi, A. Khandoker, and N. Werghi. 2021. Colorectal cancer tissue classification
using semi-supervised hypergraph convolutional network. In 2021 IEEE 18th International Symposium on Biomedical
Imaging. 1306-1309.

[13] M. Balcilar, G. Renton, P. Héroux, B. Gatizére, S. Adam, and P. Honeine. 2020. Bridging the Gap between Spectral
and Spatial Domains in Graph Neural Networks.

[14] M. Balcilar, G. Renton, P. Héroux, B. Gatizere, S. Adam, and P. Honeine. 2020. When spectral domain meets spatial
domain in graph neural networks. In 37th Int. Conf. on Machine Learning - Workshop on Graph Representation Learning
and Beyond (GRL+°20). 1-9.

[15] S. Bandyopadhyay, K. Das, and M. N. Murty. 2020. Hypergraph attention isomorphism network by learning line
graph expansion. In 2020 IEEE Int. Conf. on Big Data. 669-678.

[16] C. D. T. Barros, M. R. F. Mendonga, A. B. Vieira, and A. Ziviani. 2021. A survey on embedding dynamic graphs.
Comput. Surveys 55, 1, Article 10 (2021), 37 pages.

[17] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania,].-G Young, and G. Petri. 2020. Networks beyond
pairwise interactions: Structure and dynamics. Physics Reports 874 (2020), 1-92.

[18] I. M. Baytas, C. Xiao, F. Wang, A. K. Jain, and J. Zhou. 2018. Heterogeneous hyper-network embedding. In 2018 IEEE
Int. Conf. on Data Mining. 875-880.

®https://karateclub.readthedocs.io.
"https://pnnl.github.io/HyperNetX.
8https://github.com/pszufe/SimpleHypergraphs.jl.
“https://github.com/HGX-Team/hypergraphx.
Ohttps://networkx.org/.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://arxiv.org/abs/2010.04558
https://karateclub.readthedocs.io
https://pnnl.github.io/HyperNetX
https://github.com/pszufe/SimpleHypergraphs.jl
https://github.com/HGX-Team/hypergraphx
https://networkx.org/

24:32 A. Antelmi et al.

[19] N.C.Behague, A. Bonato, M. A. Huggan, R. Malik, and T. G. Marbach. 2021. The iterated local transitivity model for
hypergraphs. CoRR abs/2101.12560 (2021).

[20] M. Belkin and P. Niyogi. 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neural
Computation 15, 6 (2003), 1373-1396.

[21] Y. Bengio, A. Courville, and P. Vincent. 2013. Representation learning: A review and new perspectives. IEEE Trans.
on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1798-1828.

[22] A.Bodé, G. Y. Katona, and Pé. L. Simon. 2016. SIS epidemic propagation on hypergraphs. Bulletin of Mathematical
Biology 78, 4 (2016), 713-735.

[23] M. Bolla. 1993. Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathematics 117, 1-3
(1993), 19-39.

[24] A Bretto. 2013. Hypergraph Theory: An Introduction. Springer International Publishing.

[25] D. Cai, X. He, and J. Han. 2007. Spectral regression: A unified subspace learning framework for content-based image
retrieval. In Proc. of the 15th ACM Int. Conf. on Multimedia. ACM, 403-412.

[26] H. Cai, V. W. Zheng, and K. C. Chang. 2018. A comprehensive survey of graph embedding: Problems, techniques,
and applications. IEEE Trans. on Knowledge and Data Engineering 30, 9 (2018), 1616-1637.

[27] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria. 2017. Learning community embedding with com-
munity detection and node embedding on graphs. In Proc. of the 2017 ACM on Conf. on Information and Knowledge
Management. ACM, 377-386.

[28] T. H. H. Chan, A. Louis, Z. G. Tang, and C. Zhang. 2018. Spectral properties of hypergraph Laplacian and approxi-
mation algorithms. 7. of the ACM 65, 3, Article 15 (2018), 48 pages.

[29] C. Chen, Z. Cheng, Z. Li, and M. Wang. 2020. Hypergraph attention networks. In 2020 IEEE 19th Int. Conf. on Trust,
Security and Privacy in Computing and Communications. 1560-1565.

[30] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. 2020. Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. Proc. of the AAAI Conf. on Artificial Intelligence 34, 4 (2020),
3438-3445.

[31] F.Chen, Y. Wang, B. Wang, and C.-C. J. Kuo. 2020. Graph representation learning: A survey. APSIPA Trans. on Signal
and Information Processing 9 (2020), e15.

[32] H. Chen, H. Yin, X. Sun, T. Chen, Bogdan G., and K. Musial. 2020. Multi-level graph convolutional networks for
cross-platform anchor link prediction. In Proc. of the 26th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data
Mining. ACM, 1503-1511.

[33] X.Chen, K. Xiong, Y. Zhang, L. Xia, D. Yin, and J. X. Huang. 2020. Neural feature-aware recommendation with signed
hypergraph convolutional network. ACM Trans. on Information Systems 39, 1, Article 8 (2020), 22 pages.

[34] D.Cheng,]J. Chen, W. Peng, W. Ye, F. Lv, T. Zhuang, X. Zeng, and X. He. 2022. IHGNN: Interactive hypergraph neural
network for personalized product search. In Proc. of the ACM Web Conference 2022. ACM, 256-265.

[35] E. Chien, C. Pan, J. Peng, and O. Milenkovic. 2022. You are allset: A multiset function framework for hypergraph
neural networks. In Int. Conf. on Learning Representations.

[36] Y. Chu, C. Feng, and C. Guo. 2018. Social-guided representation learning for images via deep heterogeneous hyper-
graph embedding. In 2018 IEEE Int. Conf. on Multimedia and Expo. 1-6.

[37] Y. Chu, C. Feng, C. Guo, Y. Wang, and J. N. Hwang. 2019. Event2vec: Heterogeneous hypergraph embedding for
event data. In IEEE Int. Conf. on Data Mining Workshops, 1022-1029.

[38] F.R. K. Chung. 1997. Spectral Graph Theory. American Mathematical Society.

[39] G.F.de Arruda, G. Petri, and Y. Moreno. 2020. Social contagion models on hypergraphs. Physical Review Research 2,
2(2020), 023032.

[40] K. Ding, J. Wang, J. Li, D. Li, and H. Liu. 2020. Be more with less: Hypergraph attention networks for inductive
text classification. In Proc. of the 2020 Conf. on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 4927-4936.

[41] M.Ding, X.Lin, B. Zeng, and Y. Chai. 2021. Hypergraph neural networks with attention mechanism for session-based
recommendation. J. of Physics: Conference Series 2082, 1 (2021), 012007.

[42] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang. 2020. Heterogeneous network representation learning. In Proc.
of the 29th Int. Joint Conf. on Artificial Intelligence. Int. Joint Conferences on Artificial Intelligence Organization,
4861-4867.

[43] Y. Dong, W. Sawin, and Y. Bengio. 2020. HNHN: Hypergraph networks with hyperedge neurons. In Graph Represen-
tation Learning and Beyond Workshop at ICML 2020.

[44] G. Faggioli, M. Polato, and F. Aiolli. 2020. Recency aware collaborative filtering for next basket recommendation. In
Proc. of the 28th ACM Conf. on User Modeling, Adaptation and Personalization. ACM, 80-87.

[45] H.Fan, F. Zhang, Y. Wei, Z. Li, C. Zou, Y. Gao, and Q. Dai. 2021. Heterogeneous hypergraph variational autoencoder
for link prediction. IEEE Trans. on Pattern Analysis and Machine Intelligence 44, 8 (2021), 4125-4138.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

A Survey on Hypergraph Representation Learning 24:33

[46]

[47]

[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

B. Fatemi, P. Taslakian, D. Vazquez, and D. Poole. 2021. Knowledge hypergraphs: Prediction beyond binary relations.
In Proc. of the 29th Int. Joint Conf. on Artificial Intelligence. Article 303.

M. R. Felipe-Lucia, A. M. Guerrero, S. M. Alexander, J. Ashander, J. A. Baggio, M. L. Barnes, O. Bodin, A. Bonn, M.-].
Fortin, R. S. Friedman, J. A. Gephart, K. J. Helmstedt, A. A. Keyes, K. Kroetz, F. Massol, M. J.O. Pocock, J. Sayles,
R. M. Thompson, S. A. Wood, and L. E. Dee. 2022. Conceptualizing ecosystem services using social-ecological net-
works. Trends in Ecology & Evolution 37, 3 (2022), 211-222.

Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao. 2019. Hypergraph neural networks. Proc. of the AAAI Conf. on Artificial
Intelligence 33, 1 (2019), 3558-3565.

S. Fu, W. Liu, Y. Zhou, and L. Nie. 2019. HpLapGCN: hypergraph P-laplacian graph convolutional networks. Neuro-
computing 362 (2019), 166-174.

Fukunaga, Yamada, Stone, and Kasai. 1984. A representation of hypergraphs in the Euclidean space. IEEE Trans. on
Computers C-33, 4 (1984), 364-367. https://ieeexplore.icee.org/document/1676443.

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. 1993. Directed hypergraphs and applications. Discrete Applied Math-
ematics 42, 2 (1993), 177-201.

H. Gao and H. Huang. 2018. Deep attributed network embedding. In Proc. of the 27th Int. Joint Conf. on Artificial
Intelligence. AAAI Press, 3364-3370.

Y. Gao, Y. Feng, S. Ji, and R. Ji. 2023. HGNN+: General hypergraph neural networks. IEEE Trans. on Pattern Analysis
and Machine Intelligence 45, 3 (2023), 3181-3199.

Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou. 2022. Hypergraph learning: Methods and practices. IEEE Trans.
on Pattern Analysis and Machine Intelligence 44, 5 (2022), 2548-2566.

L. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press. http://www.deeplearningbook.org.

S. Gopalakrishnan, S. Sridharan, S. R. Nayak, J. Nayak, and S. Venkataraman. 2022. Central hubs prediction for bio
networks by directed hypergraph - GA with validation to COVID-19 PPL Pattern Recognition Letters 153 (2022),
246-253.

D. Grattarola. 2021. Graph Neural Networks Operators and Architectures. Ph.D. Dissertation. Faculty of Informatics
of the Universita della Svizzera Italiana.

J. Grilli, G. Barabas, M. J. Michalska-Smith, and S. Allesina. 2017. Higher-order interactions stabilize dynamics in
competitive network models. Nature 548, 7666 (2017), 210-213.

A. Grover and J. Leskovec. 2016. Node2vec: Scalable feature learning for networks. In Proc. of the 22nd ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining. ACM, 855-864.

Y. Guan, X. Sun, and Y. Sun. 2021. Sparse relation prediction based on hypergraph neural networks in online social
networks. World Wide Web 26 (2021), 7-31.

H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han. 2016. Large-scale embedding learning in heterogeneous event
data. In 2016 IEEE 16th Int. Conf. on Data Mining, 907-912.

H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, L. Kaplan, and J. Han. 2017. Embedding learning with events in heteroge-
neous information networks. IEEE Trans. on Knowledge and Data Engineering 29, 11 (2017), 2428-2441.

L. Guo, H. Yin, T. Chen, X. Zhang, and K. Zheng. 2021. Hierarchical hyperedge embedding-based representation
learning for group recommendation. ACM Trans. on Information Systems 40, 1, Article 3 (2021), 27 pages.

X. Guo, L. Zhao, Z. Qin, L. Wu, A. Shehu, and Y. Ye. 2020. Interpretable deep graph generation with node-edge
co-disentanglement. In Proc. of the 26th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. ACM,
1697-1707.

W. L. Hamilton. 2020. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, Vol. 14. Morgan & Claypool Publishers.

W. L. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive representation learning on large graphs. In Proc. of the 31st
Int. Conf. on Neural Information Processing Systems. Curran Associates Inc., 1025-1035.

W. L. Hamilton, R. Ying, and R. Leskovec. 2017. Representation learning on graphs: Methods and applications. IEEE
Data Engineering Bulletin 40, 3 (2017), 52-74.

J. Han, Q. Tao, Y. Tang, and Y. Xia. 2022. DH-HGCN: Dual homogeneity hypergraph convolutional network for
multiple social recommendations. In Proc. of the 45th International ACM SIGIR Conf. on Research and Development in
Information Retrieval. ACM, 2190-2194.

Z.S. Harris. 1954. Distributional structure. WORD 10, 2-3 (1954), 146-162.

L. He, H. Chen, D. Wang, S. Jameel, P. Yu, and G. Xu. 2021. Click-through rate prediction with multi-modal hyper-
graphs. In Proc. of the 30th ACM Int. Conf. on Information & Knowledge Management. ACM, 690-699.

D.J. Higham and H.-L. de Kergorlay. 2021. Epidemics on hypergraphs: Spectral thresholds for extinction. Proc. of the
Royal Society A: Mathematical, Physical and Engineering Sciences 477, 2252 (2021), 20210232.

Z.Hu,J. Wang, S. Chen, and X. Du. 2021. A semi-supervised framework with efficient feature extraction and network
alignment for user identity linkage. In Proc. of the 26th Int. Conf. of Database Systems for Advanced Applications.
Springer-Verlag, 675-691.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://ieeexplore.ieee.org/document/1676443
http://www.deeplearningbook.org

24:34 A. Antelmi et al.

[73] G.-B. Huang, Q.-Y. Zhu, and C.-k Siew. 2006. Extreme learning machine: Theory and applications. Neurocomputing
70, 1 (2006), 489-501.

[74] J. Huang, Ch. Chen, F. Ye, W. Hu, and Z. Zheng. 2020. Nonuniform hyper-network embedding with dual mechanism.
ACM Trans. on Information Systems 38, 3, Article 28 (2020), 1-18.

[75] J. Huang, C. Chen, F. Ye, J. Wu, Z. Zheng, and G. Ling. 2019. Hyper2vec: Biased random walk for hyper-network em-
bedding. In Database Systems for Advanced Applications, Vol. 11448 LNCS. Springer International Publishing, Cham,
273-277.

[76] J. Huang, X. Huang, and J. Yang. 2021. Residual enhanced multi-hypergraph neural network. In 2021 IEEE Int. Conf.
on Image Processing. 3657-3661.

[77] J. Huang, F. Lei, S. Wang, S. Wang, and Q. Dai. 2021. Hypergraph convolutional network with hybrid higher-order
neighbors. In Pattern Recognition and Computer Vision. Springer International Publishing, Cham, 103-114.

[78] J. Huang, X. Liu, and Y. Song. 2019. Hyper-path-based representation learning for hyper-networks. In Proc. of the
28th ACM Int. Conf. on Information and Knowledge Management. ACM, 449-458.

[79] J.Huang and J. Yang. 2021. UniGNN: A unified framework for graph and hypergraph neural networks. In Proc. of the
30th Int. Joint Conf. on Artificial Intelligence. Int. Joint Conferences on Artificial Intelligence Organization, 2563-2569.

[80] S.Huang, D. Yang, Y. Ge, and X. Zhang. 2016. Discriminant hyper-Laplacian projections and its scalable extension
for dimensionality reduction. Neurocomputing 173 (2016), 145-153.

[81] I Iacopini, G. Petri, A. Baronchelli, and A. Barrat. 2022. Group interactions modulate critical mass dynamics in social
convention. Communications Physics 5, 1 (2022), 64.

[82] B.Jhun, M. Jo, and B. Kahng. 2019. Simplicial SIS model in scale-free uniform hypergraph. 7. of Statistical Mechanics:
Theory and Experiment 2019, 12 (2019), 123207.

[83] J. Ji, Y. Ren, and M. Lei. 2022. FC-HAT: Hypergraph attention network for functional brain network classification.
Information Sciences 608 (2022), 1301-1316.

[84] S.Ji, Y. Feng, R. Ji, X. Zhao, W. Tang, and Y. Gao. 2020. Dual channel hypergraph collaborative filtering. In Proc. of
the Int. Conf. on Knowledge Discovery & Data Mining. ACM, 2020-2029.

[85] R.]Jia, X. Zhou, L. Dong, and S. Pan. 2021. Hypergraph convolutional network for group recommendation. In 2021
IEEE Int. Conf. on Data Mining. 260-269.

[86] J.Jiang, Y. Wei, Y. Feng, J. Cao, and Y. Gao. 2019. Dynamic hypergraph neural networks. In Proc. of the 28th Int. Joint
Conf. on Artificial Intelligence. Int. Joint Conferences on Artificial Intelligence Organization, 2635-2641.

[87] H.Jin, Y. Wu, H. Huang, Y. Song, H. Wei, and X. Shi. 2022. Modeling information diffusion with sequential interactive
hypergraphs. IEEE Trans. on Sustainable Computing 7, 3 (2022), 644-655.

[88] J. Jo, J. Baek, S. Lee, D. Kim, M. Kang, and S. J. Hwang. 2021. Edge representation learning with hypergraphs. In
Advances in Neural Information Processing Systems, Vol. 34. Curran Associates, Inc., 7534-7546.

[89] J. Kim, S. Oh, and S. Hong. 2021. Transformers generalize deepsets and can be extended to graphs and hypergraphs.
In Advances in Neural Information Processing Systems, Vol. 34. Curran Associates, Inc., 28016-28028.

[90] D.P.Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980.

[91] V. La Gatta, V. Moscato, M. Pennone, M. Postiglione, and G. Sperli. 2022. Music recommendation via hypergraph
embedding. IEEE Trans. on Neural Networks and Learning Systems (2022), 1-13. https://ieeexplore.ieee.org/document/
9709542.

[92] N. W. Landry and J. G. Restrepo. 2020. The effect of heterogeneity on hypergraph contagion models. Chaos: An
Interdisciplinary J. of Nonlinear Science 30, 10 (2020), 103117.

[93] B.Liand D. Pi. 2020. Network representation learning: A systematic literature review. Neural Computing and Appli-
cations 32, 21 (2020), 16647-16679.

[94] H.Li, X. Wang, Z. Zhang, Z. Yuan, H. Li, and W. Zhu. 2021. Disentangled contrastive learning on graphs. In Advances
in Neural Information Processing Systems, Vol. 34. Curran Associates, Inc., 21872-21884.

[95] Y. Li, H. Chen, X. Sun, Z. Sun, L. Li, L. Cui, P.S. Yu, and G. Xu. 2021. Hyperbolic hypergraphs for sequential recom-
mendation. In Proc. of the 30th ACM Int. Conf. on Information & Knowledge Management. ACM, 988-997.

[96] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. 2016. Gated graph sequence neural networks. In Int. Conf. on
Learning Representations.

[97] X.Liao, Y. Xu, and H. Ling. 2021. Hypergraph neural networks for hypergraph matching. In 2021 IEEE/CVF Int. Conf.
on Computer Vision. 1246—1255.

[98] D. Liben-Nowell and J. Kleinberg. 2007. The link-prediction problem for social networks. 7. of the American Society
for Information Science and Technology 58, 7 (2007), 1019-1031.

[99] B. Liu, P. Zhao, F. Zhuang, X. Xian, Y. Liu, and V. S. Sheng. 2021. Knowledge-aware hypergraph neural network
for recommender systems. In Database Systems for Advanced Applications. Springer International Publishing, Cham,
132-147.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://arxiv.org/abs/1412.6980
https://ieeexplore.ieee.org/document/9709542

A Survey on Hypergraph Representation Learning 24:35

[100]

[101]

[102]
[103]

[104]

(105]
(106]
(107]
(108]
(109]
[110]
[111]
(112]
(113]
[114]
(115]
[116]
[117]
[118]

[119]

[120]
[121]
[122]
[123]

[124]

[127]

Z. Liu, Z. Zhang, Y. Cai, Y. Miao, and Z. Chen. 2021. Semi-supervised classification via hypergraph convolutional
extreme learning machine. Applied Sciences 11, 9 (2021), 3867. https://www.mdpi.com/2076-3417/11/9/3867.

Q. F. Lotito, M. Contisciani, C. De Bacco, L. Di Gaetano, L. Gallo, A. Montresor, F. Musciotto, N. Ruggeri, and
F. Battiston. 2023. Hypergraphx: A library for higher-order network analysis. J. of Complex Networks 11, 3 (2023).
https://academic.oup.com/comnet/article-abstract/11/3/cnad019/7180959.

Q. F. Lotito, F. Musciotto, A. Montresor, and F. Battiston. 2022. Higher-order motif analysis in hypergraphs. Commu-
nications Physics 5, 1 (2022), 79.

F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao. 2019. Feature learning using spatial-spectral hypergraph discriminant
analysis for hyperspectral image. IEEE Trans. on Cybernetics 49, 7 (2019), 2406-2419.

F.Luo, G. Guo, Z. Lin, J. Ren, and X. Zhou. 2020. Semisupervised hypergraph discriminant learning for dimensionality
reduction of hyperspectral image. IEEE 7. of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020),
4242-4256.

X. Luo, J. Peng, and J. Liang. 2022. Directed hypergraph attention network for traffic forecasting. IET Intelligent
Transport Systems 16, 1 (2022), 85-98.

M. Jichao, W. Yanjiang, L. Baodi, and L. Weifeng. 2021. Accurately modeling the human brain functional correlations
with hypergraph laplacian. Neurocomputing 428 (2021), 239-247.

T. Ma and J. Guo. 2018. Study on information transmission model of enterprise informal organizations based on the
hypernetwork. Chinese J. of Physics 56, 5 (2018), 2424-2438.

X. Ma, W. Liu, Q. Tian, and Y. Gao. 2022. Learning representation on optimized high-order manifold for visual clas-
sification. IEEE Trans. on Multimedia 24 (2022), 3989-4001.

Z.Ma, Z.Jiang, and H. Zhang. 2021. Hyperspectral image classification using spectral-spatial hypergraph convolution
neural network. In Image and Signal Processing for Remote Sensing XXVII, Vol. 11862. SPIE, 118620

Z.Ma, Z. Jiang, and H. Zhang. 2022. Hyperspectral image classification using feature fusion hypergraph convolution
neural network. IEEE Trans. On Geoscience and Remote Sensing 60 (2022), 1-14.

M. Madine, I. Rekik, and N. Werghi. 2020. Diagnosing autism using T1-W MRI with multi-kernel learning and hy-
pergraph neural network. In 2020 IEEE Int. Conf. on Image Processing. 438-442.

S. Maleki, D. P. Wall, and K. Pingali. 2021. NetVec: A scalable hypergraph embedding system. In Proc. of the Int. Conf.
on Machine Learning - Workshops.

V. Martinez, F. Berzal, and J.-C. Cubero. 2016. A survey of link prediction in complex networks. Comput. Surveys 49,
4, Article 69 (2016), 33 pages.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. In
Proc. of Int. Conf. on Learning Representation.

L. Neuhduser, R. Lambiotte, and M. T. Schaub. 2021. Consensus dynamics on temporal hypergraphs. Physics Review
E 104, 6 (2021), 064305.

L. Neuhéduser, A. Mellor, and R. Lambiotte. 2020. Multibody interactions and nonlinear consensus dynamics on net-
worked systems. Physics Review E 101, 3 (2020), 032310.

L. Nong, J. Wang, J. Lin, H. Qiu, L. Zheng, and W. Zhang. 2021. Hypergraph wavelet neural networks for 3d object
classification. Neurocomputing 463, C (2021), 580-595.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. 2016. Asymmetric transitivity preserving graph embedding. In Proc. of
the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. ACM, 1105-1114.

S.Pang, K. Zhang, S. Wang, Y. Zhang, S. He, W. Wu, and S. Qiao. 2021. HGDD: A drug-disease high-order association
information extraction method for drug repurposing via hypergraph. In Bioinformatics Research and Applications.
Springer International Publishing, Cham, 424-435.

J. Payne. 2019. Deep hyperedges: A framework for transductive and inductive learning on hypergraphs. In Proc. of
Neural Information Processing Systems.

D. Peng and S. Zhang. 2022. GC-HGNN: A global-context supported hypergraph neural network for enhancing
session-based recommendation. Electronic Commerce Research and Applications 52 (2022), 101129.

B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. Deepwalk: Online learning of social representations. In Proc. of the 20th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. ACM, 701-710.

L. Pu and B. Faltings. 2012. Hypergraph learning with hyperedge expansion. In Machine Learning and Knowledge
Discovery in Databases. Springer, Berlin, 410-425.

P. Ren, R. C. Wilson, and E. R. Hancock. 2008. Spectral embedding of feature hypergraphs. In Structural, Syntactic,
and Statistical Pattern Recognition. 308-317.

S. Rendle. 2010. Factorization machines. In Proc. of the Int. Conf. on Data Mining. 995-1000.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence. AUAI Press, 452-461.

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. 2010. Recommender Systems Handbook (1st ed.). Springer-Verlag.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://www.mdpi.com/2076-3417/11/9/3867
https://academic.oup.com/comnet/article-abstract/11/3/cnad019/7180959

24:36

A. Antelmi et al.

[128] J. A. Rodriguez. 2002. On the Laplacian eigenvalues and metric parameters of hypergraphs. Linear and Multilinear

[129]
[130]
[131]
[132]
(133]

[134]

Algebra 50, 1 (2002), 1-14.

P. Rosso, D. Yang, and P. Cudré-Mauroux. 2020. Beyond triplets: Hyper-relational knowledge graph embedding for
link prediction. In Proc. of the Web Conference 2020. ACM, 1885-1896.

R. Sahasrabuddhe, L. Neuhduser, and R. Lambiotte. 2021. Modelling non-linear consensus dynamics on hypergraphs.
J. of Physics: Complexity 2, 2 (2021), 025006.

S. Saito, D. P. Mandic, and H. Suzuki. 2018. Hypergraph p-Laplacian: A differential geometry view. Proc. of the AAAI
Conf. on Artificial Intelligence 32, 1 (2018).

A. Sanchez-Gorostiaga, D. Baji¢, M. L. Osborne, J. F. Poyatos, and A. Sanchez. 2019. High-order interactions distort
the functional landscape of microbial consortia. PLOS Biology 17, 12 (12 2019), 1-34.

N. Sasikaladevi. 2022. Robust and fast plant pathology prognostics (P3) tool based on deep convolutional neural
network. Multimedia Tools and Applications 81, 5 (2022), 7271-7283.

R. Sawhney, S. Agarwal, A. Wadhwa, T. Derr, and R. R. Shah. 2021. Stock selection via spatiotemporal hypergraph
attention network: A learning to rank approach. Proc. of the AAAI Conf. on Artificial Intelligence 35, 1 (2021), 497-504.

[135] J. Shun. 2020. Practical parallel hypergraph algorithms. In Proc. of the ACM Symposium on Principles and Practice of

[136]
(137]
[138]
[139]

[140]

[141]

[142]

Parallel Programming. 232-249.

B. Srinivasan, D. Zheng, and G. Karypis. 2021. Learning over families of sets - Hypergraph representation learning
for higher order tasks. In Proc. of the 2021 SIAM Int. Conf. on Data Mining. Siam Society, 756-764.

L. Sun, S. Ji, and J. Ye. 2008. Hypergraph spectral learning for multi-label classification. In Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining. ACM, 668-676.

X. Sun, H. Yin, B. Liu, H. Chen, J. Cao, Y. Shao, and N.Q. Viet Hung. 2021. Heterogeneous hypergraph embedding for
graph classification. In Proc. of the Int. Conf. on Web Search and Data Mining. ACM, 725-733.

X. Sun, H. Yin, B. Liu, H. Chen, Q. Meng, W. Han, and J. Cao. 2021. Multi-level hyperedge distillation for social linking
prediction on sparsely observed networks. In Proc. of the Web Conference 2021. ACM, 2934-2945.

X. Sun, H. Yin, B. Liu, Q. Meng, J. Cao, A. Zhou, and H. Chen. 2022. Structure learning via meta-hyperedge for
dynamic rumor detection. IEEE Trans. on Knowledge and Data Engineering (2022), 1-12. https://ieeexplore.ieee.org/
document/9946426.

Y. Sun, Sujuan Wang, Qingshan Liu, Renlong Hang, and Guangcan Liu. 2017. Hypergraph embedding for spatial-
spectral joint feature extraction in hyperspectral images. Remote Sensing 9, 5 (2017), 506. https://www.mdpi.com/
2072-4292/9/5/506.

Q. Suo, J. Guo, and A. Shen. 2018. Information spreading dynamics in hypernetworks. Physica A: Statistical Mechanics
and its Applications 495 (2018), 475-487.

[143] J. Sybrandt and I. Safro. 2019. FOBE and HOBE: First- and High-Order Bipartite Embeddings. arXiv, abs/1905.10953.
[144] J. Sybrandt, R. Shaydulin, and I. Safro. 2020. Hypergraph partitioning with embeddings. IEEE Trans. on Knowledge

[145]
[146]
[147]
[148]
[149]
[150]

[151]

and Data Engineering 34, 6 (2020), 2771-2782.

T. Thonet, J.-M. Renders, M. Choi, and J. Kim. 2022. Joint personalized search and recommendation with hypergraph
convolutional networks. In Advances in Information Retrieval. Springer-Verlag, 443-456.

H. T. Trung, T. Van Vinh, N. T. Tam, J. Jo, H. Yin, and N. Q. V. Hung. 2022. Learning holistic interactions in LBSNs with
high-order, dynamic, and multi-role contexts. IEEE Trans. on Knowledge and Data Engineering 35, 5 (2022), 5002-5016.
K. Tu, P. Cui, X. Wang, F. Wang, and W. Zhu. 2018. Structural deep embedding for hyper-networks. In Proc. of the
32nd AAAI Conf. on Artificial Intelligence. AAAI Press, Article 53.

L. van der Maaten and G. Hinton. 2008. Visualizing data using t-SNE. . of Machine Learning Research 9 (2008), 2579—
2605.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. 2017. Attention
is all you need. In Advances in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. 2017. Graph attention networks. In 6th Int.
Conf. on Learning Representations.

M. Vijaikumar, D. Hada, and S. Shevade. 2021. HyperTeNet: Hypergraph and transformer-based neural network for
personalized list continuation. In 2021 IEEE Int. Conf. on Data Mining. 1210-1215.

[152] J. Wang, K. Ding, L. Hong, H. Liu, and J. Caverlee. 2020. Next-item recommendation with sequential hypergraphs.

In Proc. of the 43rd Int. ACM Conf. on Research and Development in Information Retrieval. ACM, 1101-1110.

[153] J. Wang, K. Ding, Z. Zhu, and J. Caverlee. 2021. Session-based recommendation with hypergraph attention networks.

In Proc. of the SIAM Int. Conf. on Data Mining. Society for Industrial and Applied Mathematics, 82-90.

[154] J. Wang, Y. Zhang, L. Wang, Y. Hu, X. Piao, and B. Yin. 2022. Multitask hypergraph convolutional networks: A

heterogeneous traffic prediction framework. IEEE Trans. on Intelligent Transportation Systems 23 (2022), 1-11.

[155] J. Wang, Y. Zhang, Y. Wei, Y. Hu, X. Piao, and B. Yin. 2021. Metro passenger flow prediction via dynamic hypergraph

convolution networks. IEEE Trans. on Intelligent Transportation Systems 22, 12 (2021), 7891-7903.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://ieeexplore.ieee.org/document/9946426
https://www.mdpi.com/2072-4292/9/5/506

A Survey on Hypergraph Representation Learning 24:37

[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]

[164]

[165]

[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]

[182]

N . Wang, S. Wang, Y. Wang, Q. Z. Sheng, and M. A. Orgun. 2022. Exploiting intra- and inter-session dependencies
for session-based recommendations. World Wide Web 25, 1 (2022), 425-443.

R. Wang, Y. Li, S. Lin, H. Xie, Y. Xu, and J. C. S. Lui. 2021. On modeling influence maximization in social activity
networks under general settings. ACM Trans. on Knowledge Discovery from Data 15, 6, Article 108 (2021), 28 pages.
X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and P. S. Yu. 2022. A survey on heterogeneous graph embedding: methods,
techniques, applications and sources. IEEE Trans. on Big Data 9 (2022), 415-436.

L. Wu, D. Wang, K. Song, S. Feng, Y. Zhang, and G. Yu. 2021. Dual-view hypergraph neural networks for attributed
graph learning. Knowledge-Based Systems 227 (2021), 107185.

X. Wu, Q. Chen, W. Li, Y. Xiao, and B. Hu. 2020. AdaHGNN: Adaptive hypergraph neural networks for multi-label
image classification. In Proc. of the Int. Conf. on Multimedia. ACM, 284-293.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2021. A comprehensive survey on graph neural networks.
IEEE Trans. on Neural Networks and Learning Systems 32, 1 (2021), 4-24.

L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, and J. Huang. 2022. Hypergraph contrastive collaborative filtering. In Proc.
of the 45th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM, 70-79.

L. Xia, C. Huang, and C. Zhang. 2022. Self-supervised hypergraph transformer for recommender systems. In Proc. of
the 28th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM, 2100-2109.

L. Xia, P. Zheng, X. Huang, and C. Liu. 2021. A novel hypergraph convolution network-based approach for pre-
dicting the material removal rate in chemical mechanical planarization. J. of Intelligent Manufacturing 33, 8 (2021),
2295-2306.

L. Xia, P. Zheng, and C. Liu. 2021. Predicting the material removal rate in chemical mechanical planarization process:
A hypergraph neural network-based approach. Proc. of the ASME Design Engineering Technical Conference 85376
(2021).

X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang. 2021. Self-supervised hypergraph convolutional networks for
session-based recommendation. Proc. of the AAAI Conf. on Artificial Intelligence 35, 5 (2021), 4503-4511.

B. Xu, N. Wang, T. Chen, and M. Li. 2015. Empirical Evaluation of Rectified Activations in Convolutional Network.
G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong. 2022. Dynamic network embedding survey. Neurocomputing
472 (2022), 212-223. arxiv https://arxiv.org/abs/1505.00853

H. Xue, L. Yang, V. Rajan, W. Jiang, Y. Wei, and Y. Lin. 2021. Multiplex bipartite network embedding using dual
hypergraph convolutional networks. In Proc. of the Web Conference 2021. ACM, 1649-1660.

N. Yadati. 2020. Neural message passing for multi-relational ordered and recursive hypergraphs. In Proc. of the 34th
Int. Conf. on Neural Information Processing Systems. Curran Associates, Inc., Article 276.

N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar. 2019. HyperGCN: A new method for training
graph convolutional networks on hypergraphs. In Advances in Neural Information Processing Systems, Vol. 32. Curran
Associates, Inc.

N. Yadati, V. Nitin, M. Nimishakavi, P. Yadav, A. Louis, and P. Talukdar. 2020. NHP: Neural hypergraph link prediction.
In Proc. of the Int. Conf. on Information & Knowledge Management. ACM, 1705-1714.

S. Yan, Z. Zhang, X. Sun, G. Xu, L. Jin, and S. Li. 2022. HYPER2: Hyperbolic embedding for hyper-relational link
prediction. Neurocomputing 492 (2022), 440-451.

C. Yang, R. Wang, S. Yao, and T. Abdelzaher. 2022. Semi-supervised hypergraph node classification on hypergraph
line expansion. In Proc. of the 31st ACM Int. Conf. on Information & Knowledge Management. ACM, 2352-2361.

D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. 2019. Revisiting user mobility and social relationships in LBSNs: A
hypergraph embedding approach. In The World Wide Web Conference. ACM, 2147-2157.

D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. 2020. LBSN2Vec++: Heterogeneous hypergraph embedding for
location-based social networks. IEEE Trans. on Knowledge and Data Engineering 34 (2020), 1843-1855.

J. Yi and J. Park. 2020. Hypergraph convolutional recurrent neural network. In Proc. of the 26th ACM SIGKDD Int.
Conf. on Knowledge Discovery & Data Mining. ACM, 3366-3376.

S. Yoon, H. Song, K. Shin, and Y. Yi. 2020. How much and when do we need higher-order information in hypergraphs?
A case study on hyperedge prediction. In Proc. of the Web Conference 2020. ACM, 2627-2633.

C. Yu, C. Tai, T. Chan, and Y. Yang. 2018. Modeling multi-way relations with hypergraph embedding. In Proc. of the
ACM Int. Conf. on Information and Knowledge Management. ACM, 1707-1710.

Guihai Yu, Xiying Yuan, and Hui Qu. 2019. Signed k-uniform hypergraphs and tensors. Linear Algebra Appl. 580
(2019), 1-13.

J. Yu, H. Yin, J. Li, Q. Wang, N. Q. V. Hung, and X. Zhang. 2021. Self-supervised multi-channel hypergraph convolu-
tional network for social recommendation. In Proc. of the Web Conference 2021. ACM, 413-424.

H. Yuan and Y. Y. Tang. 2015. Learning with hypergraph for hyperspectral image feature extraction. IEEE Geoscience
and Remote Sensing Letters 12, 8 (2015), 1695-1699.

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://arxiv.org/abs/1505.00853

24:38 A. Antelmi et al.

[183] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. 2017. Deep sets. In Advances
in Neural Information Processing Systems 30. Curran Associates, Inc., 3391-3401.

[184] D. Zhang, J. Yin, X. Zhu, and C. Zhang. 2020. Network representation learning: A survey. IEEE Trans. on Big Data 6,
1(2020), 3-28.

[185] J. Zhang, M. Gao, J. Yu, L. Guo, J. Li, and H. Yin. 2021. Double-scale self-supervised hypergraph learning for group
recommendation. In Proc. of the Int. Conf. on Information & Knowledge Management. ACM, 2557-2567.

[186] L. Zhang, J. Guo, J. Wang, J. Wang, S. Li, and C. Zhang. 2022. Hypergraph and uncertain hypergraph representation
learning theory and methods. Mathematics 10, 11 (2022), 1921. https://www.mdpi.com/2227-7390/10/11/1921.

[187] M. Zhang, H. Luo, W. Song, H. Mei, and C. Su. 2021. Spectral-spatial offset graph convolutional networks for hyper-
spectral image classification. Remote Sensing 13, 21 (2021), 4342. https://www.mdpi.com/2072-4292/13/21/4342.

[188] R. Zhang and J. Ma. 2020. MATCHA: Probing multi-way chromatin interaction with hypergraph representation
learning. Cell Systems 10, 5 (2020), 397-407.e5.

[189] R. Zhang and J. Ma. 2020. Probing multi-way chromatin interaction with hypergraph representation learning. In
Research in Computational Molecular Biology. Springer International Publishing, Cham, 276-277.

[190] R. Zhang, T. Zhou, and J. Ma. 2022. Multiscale and integrative single-cell hi-C analysis with Higashi. Nature Biotech-
nology 40, 2 (2022), 254-261.

[191] R. Zhang, Y. Zou, and J. Ma. 2020. Hyper-SAGNN: A self-attention based graph neural network for hypergraphs. In
Int. Conf. on Learning Representations.

[192] S. Zhang, H. Tong, J. Xu, and R. Maciejewski. 2019. Graph convolutional networks: A comprehensive review. Com-
putational Social Networks 6, 1 (2019), 11.

[193] Q.Zheng and D. B. Skillicorn. 2015. Spectral embedding of directed networks. In Proc. of the 2015 IEEE/ACM Int. Conf.
on Advances in Social Networks Analysis and Mining 2015. ACM, 432-439.

[194] D. Zhou, J. Huang, and B. Schélkopf. 2007. Learning with hypergraphs: Clustering, classification, and embedding. In
Proc. of Neural Information Processing Systems. 1601-1608.

[195] J. Zhu, S. Ghosh, and W. Wu. 2019. Group influence maximization problem in social networks. IEEE Trans. on Com-
putational Social Systems 6, 6 (2019), 1156-1164.

[196] J. Zhu,]J. Zhu, J. Ghosh, W. Wu, and J. Yuan. 2019. Social influence maximization in hypergraph in social networks.
IEEE Trans. on Network Science and Engineering 6, 4 (2019), 801-811.

[197] Y. Zhu, Z. Guan, T. Tan, H. Liu, D. Cai, and X. He. 2016. Heterogeneous hypergraph embedding for document rec-
ommendation. Neurocomputing 216 (2016), 150-162.

[198] Y. Zhu and H. Zhao. 2022. Hypernetwork representation learning with the set constraint. Applied Sciences 12, 5 (2022),
2650. https://www.mdpi.com/2076-3417/12/5/2650.

Received 22 September 2022; revised 12 April 2023; accepted 31 May 2023

ACM Computing Surveys, Vol. 56, No. 1, Article 24. Publication date: August 2023.

https://www.mdpi.com/2227-7390/10/11/1921
https://www.mdpi.com/2072-4292/13/21/4342
https://www.mdpi.com/2076-3417/12/5/2650

